Mesoporous silica nanoparticles are being explored as versatile tools for various biomedical and biotechnological applications including disease diagnosis, drug delivery, and intracellular imaging. In this paper, the synthesis and characterization of a fluorescent hybrid mesoporous silica nanomaterial, which is noncytotoxic and shows great potential for "in-cell" bioimaging applications, will be described. The hybrid mesoporous material has been obtained by confining highly fluorescent organic dyes, belonging to the indocyanine family, within the channels of mesoporous MCM-41. To explore the dispersion of the dye inside the mesoporous channels and the formation of dye aggregates, several hybrid samples with increasing dye/MCM-41 loading (up to 100 mg/g) were prepared. A uniform distribution of monomeric 1,1'-diethyl-3,3,3',3'-tetramethylindocarbocyanine iodide has been achieved at low dye loading (1 mg/g), as evidenced by photoluminescence spectra and lifetime, while a progressive formation of J-aggregates is induced by an increase in the dye loading. To elucidate the properties of the dye immobilized in mesoporous MCM-41, a detailed physical chemical characterization by structural (X-ray diffraction), volumetric and optical (Fourier transform infrared, diffuse-reflectance UV-vis and photoluminescence) techniques has been performed. By ultrasonication of the bulk material, nanoparticles of 2-20 nm diameter were obtained. Biocompatibility, endocytic uptake, and intracellular compartmentalization of such fluorescent nanoparticles were investigated in mammalian cultured cells.
A series of novel functionalized, water-soluble, pH-unsensitive, highly photostable heptamethine cyanine dyes (HCDs) has been synthesized. The aim of the synthesis was to obtain novel effective probes for fluorescence detection in the near infrared. Synthesis and characterization of a special HCD with large Stokes' shift (>100 nm), bioconjugation to IgG and effect of pH upon the new structure are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.