Objective. Lower limb amputees suffer from a variety of functional deficits related to the absence of sensory communication between the central nervous system and the lost extremity. Indeed, they experience high risk of falls, asymmetric walking and balance, and low prosthesis embodiment, that significantly decrease their quality of life. Presently, there are no commercially available devices able to provide sensory feedback to leg amputees. Recently, some invasive solutions (i.e. requiring a surgery) have been proposed by different research groups, however a non-invasive effective alternative exploitable in everyday life is still missing. Approach. To address this need we developed and tested a lightweight, non-invasive, wearable technology (NeuroLegs) providing sensory (i.e. knee angle joint and tactile) feedback to the users through electro-cutaneous stimulation. A user-friendly GUI and mobile App have been developed to easily calibrate and control the system. Standard mechanical and electrical tests were performed to assess the safety and reliability of the technology. Main results. No mechanical failures, stable communication among system parts and a long-lasting battery (>23h) were demonstrated. The NeuroLegs system was then verified in terms of accuracy in measuring relevant gait parameters in healthy participants. A high temporal reliability was found when detecting stride features (important for the real-time configuration) with a correct match to the walking cadence, in all assessed walking conditions. The effectiveness of the NeuroLegs system at improving walking of three transfemoral amputees was then verified in movement laboratory tests. Increased temporal gait symmetry and augmented confidence were found. Stepping outside from the lab, Neurolegs was successfully exploited by a transfemoral amputee in CYBATHLON Global Edition 2020 in several challenging situations related to daily-living activities. Significance. Our results demonstrate that the NeuroLegs system provides the user with useful sensory information that can be successfully exploited in different walking conditions of daily life.
A non-optimal prosthesis integration into an amputee’s body schema suggests some important functional and health consequences after lower limb amputation. These include low perception of a prosthesis as a part of the body, experiencing it as heavier than the natural limb, and cognitively exhausting use for users. Invasive approaches, exploiting the surgical implantation of electrodes in residual nerves, improved prosthesis integration by restoring natural and somatotopic sensory feedback in transfemoral amputees. A non-invasive alternative that avoids surgery would reduce costs and shorten certification time, significantly increasing the adoption of such systems. To explore this possibility, we compared results from a non-invasive, electro-cutaneous stimulation system to outcomes observed with the use of implants in above the knee amputees. This non-invasive solution was tested in transfemoral amputees through evaluation of their ability to perceive and recognize touch intensity and locations, or movements of a prosthesis, and its cognitive integration (through dual task performance and perceived prosthesis weight). While this managed to evoke the perception of different locations on the artificial foot, and closures of the leg, it was less performant than invasive solutions. Non-invasive stimulation induced similar improvements in dual motor and cognitive tasks compared to neural feedback. On the other hand, results demonstrate that remapped, evoked sensations are less informative and intuitive than the neural evoked somatotopic sensations. The device therefore fails to improve prosthesis embodiment together with its associated weight perception. This preliminary evaluation meaningfully highlights the drawbacks of non-invasive systems, but also demonstrates benefits when performing multiple tasks at once. Importantly, the improved dual task performance is consistent with invasive devices, taking steps towards the expedited development of a certified device for widespread use.
Background Exosuits have been shown to reduce metabolic cost of walking and to increase gait performance when used in clinical environment. Currently, these devices are transitioning to private use to facilitate independent training at home and in the community. However, their acceptance in unsupervised settings remains unclear. Therefore, the aim of this study was to investigate end-user perspectives and the adoption of an exosuit in domestic and community settings. Methods We conducted a mixed-method study to investigate the usability and user experience of an exosuit, the Myosuit. We leveraged on a cohort of seven expert users, who had the device available at home for at least 28 days. Each participant completed two standardized questionnaires (SUS and QUEST) and one personalized, custom questionnaire. Furthermore, a semi-structured interview with each participant was recorded, verbatim transcribed and analyzed using descriptive thematic analysis. Data collected from device sensors quantified the frequency of use. Results A mean SUS score of 75.4 out of 100 was reported. Five participants scored above the threshold for above-average usability. Participants also expressed high satisfaction with most of the technical features in the QUEST with an average score of 4.1 (3.86–4.71) out of 5. Participants used the Myosuit mainly for walking outside and exercising at home. However, the frequency of use did not meet the recommendations for physical activity established by the World Health Organization. Five participants used the Myosuit approximately once per week. The two other participants integrated the device in their daily life and used the Myosuit to a greater extent (approx. five times per week). Major factors that prevented an extensive use of the technology were: (i) difficulties in donning that led to (ii) lack of independence and (iii) lack of motivation in exercising. Conclusions Although usable for various activities and well perceived, the adoption of the exosuit in domestic and community settings is yet limited. Use outside the clinic poses further challenges that should be considered when developing new wearable robots. Primarily, design should meet the users' claim for independence and increased adjustability of the device.
Approximately 1.1. billion people worldwide live with some form of disability, and assistive technology has the potential to increase their overall quality of life. However, the end users’ perspective and needs are often not sufficiently considered during the development of this technology, leading to frustration and nonuse of existing devices. Since its first competition in 2016, CYBATHLON has aimed to drive innovation in the field of assistive technology by motivating teams to involve end users more actively in the development process and to tailor novel devices to their actual daily-life needs. Competition tasks therefore represent unsolved daily-life challenges for people with disabilities and serve the purpose of benchmarking the latest developments from research laboratories and companies from around the world. This review describes each of the competition disciplines, their contributions to assistive technology, and remaining challenges in the user-centered development of this technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.