We present an experimental study of the vitreous motion induced by saccadic eye movements. A magnified model of the vitreous chamber has been employed, consisting of a spherical cavity carved in a perspex cylindrical container, which is able to rotate with a prescribed time law. Care has been taken to correctly reproduce real saccadic eye movements. The spherical cavity is filled with glycerol and the flow field is measured on the equatorial plane orthogonal to the axis of rotation, through the PIV technique. Visualizations of the fully three-dimensional flow suggest that it essentially occurs on planes perpendicular to the axis of rotation, the motion orthogonal to such planes being smaller by three to four orders of magnitude. Theoretical results, based on a simplified solution, are in very good agreement with the experimental findings. The maximum value of the shear stress at the wall, which is thought to play a possibly important role in the pathogenesis of retinal detachment, does not significantly depend on the amplitude of saccadic movements. This suggests that relatively small eye rotations, being much more frequent than large movements, are mainly responsible for vitreous stresses on the retina. Results also illustrate the dependence of the maximum shear stress at the wall from the vitreous viscosity.
The dynamics of the vitreous body induced by eye rotations is studied experimentally. In particular, we consider the case in which the vitreous cavity is filled by a Newtonian fluid, either because the vitreous is liquefied or because it has been replaced, after vitrectomy, by a viscous fluid. We employ a rigid Perspex container which models, in a magnified scale, the vitreous cavity of the human eye. The shape of the cavity closely resembles that of the real vitreous chamber; in particular, the anterior part of the container is concave in order to model the presence of the eye lens. The container is filled with glycerol and is mounted on the shaft of a computer-controlled motor which rotates according to a periodic time law. PIV (particle image velocimetry) measurements are taken on the equatorial plane orthogonal to the axis of rotation. The experimental measurements show that the velocity field is strongly influenced by the deformed geometry of the domain. In particular, the formation of a vortex in the vicinity of the lens, which migrates in time towards the core of the domain, is invariably observed. The vortex path is tracked in time by means of a vortex identification technique and it is found that it is significantly influenced by the Womersley number of the flow. Particle trajectories are computed from the PIV measurements. Particles initially located at different positions on the equatorial horizontal plane (perpendicular to the axis of rotation) tend to concentrate in narrow regions adjacent to the lens, thus suggesting the existence, in such regions, of a vertical fluid ejection. Such a strong flow three-dimensionality, which is essentially induced by the irregular shape of the domain, may play a significant role in the mixing processes taking place inside the eye globe. The tangential stresses acting on the rigid boundary of the domain are also computed from the experimental measurements showing that regions subject to particularly intense stresses exist along the boundary close to the lens.
The vitreous cavity constitutes most of the eye volume and is filled by the vitreous humour or vitreous body. It has the shape of a weakly deformed sphere, the deformation being essentially due to the presence of the lens, which produces an inward indentation in the anterior part of the chamber. Under normal conditions the vitreous body has the consistency of a gel with viscoelastic rheological behaviour [1]. Ageing gradually disintegrates the gel structure leading to a partial or total vitreous liquefaction. After some surgical procedures (vitrectomy) the vitreous body may be completely replaced by “tamponade fluids”, typically silicon oils, which are left for a certain time within the eye and are eventually replaced by water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.