The mammalian target of rapamycin inhibitors (mTOR-I), drugs widely used in transplant medicine and oncology, exert their function by inhibiting a serine/threonine kinase with a pivotal role in cellular metabolism and in a wide range of eukaryotic biological/cellular functions and signaling networks. Additionally, as largely described, the inhibition of mTOR has a major impact on cellular metabolism by stimulating synthesis of proteins and lipids, inhibiting catabolic processes, such as lysosome biogenesis and autophagy, and controlling cell survival, cytoskeleton organization, lipogenesis, and gluconeogenesis. All these biological functions are essential to guarantee body homeostasis and survival. Therefore, it is necessary for clinicians and researchers to better understand this complex pathway to ameliorate patients' treatment empathizing therapeutic effects to minimize/avoid toxicities and to propose new valuable research strategies.The aim of this article has been to underline the complexity of the mTOR pathway and to review the recent literature describing the consequences of its inhibition on several cellular functions including (a) protein synthesis, (b) cell cycle,
Our study confirms that stone formers have increased arterial stiffness and reduced bone density. Abnormal arterial stiffness appears to be independent of reduced bone density and may explain the higher CV risk observed in stone formers.
Epidemiological evidence shows that nephrolithiasis is associated with cardiovascular (CV) morbidities. The association between nephrolithiasis and CV disease is not surprising because both diseases share conditions that facilitate their development. Metabolic conditions, encompassed in the definition of metabolic syndrome (MS), and habits that promote nephrolithiasis by altering urine composition also promote clinical manifestations of CV disease. By inducing oxidative stress, these conditions cause endothelial dysfunction and increased arterial stiffness, which are both well-known predictors of CV disease. Furthermore, the subtle systemic metabolic acidosis observed in stone formers with CV disease may have a pathogenic role by increasing bone turnover and leading to reduced mineral content and osteoporosis/osteopenia. Heart valves and/or coronary artery and aortic calcifications are frequently associated with reduced mineral density. This is known as the ‘calcification paradox’ in osteoporosis and has also been observed in subjects with calcium nephrolithiasis. Evidence supports the hypothesis that osteoporosis/osteopenia is an independent risk factor for the development of CV calcifications. In the long term, episodes of renal stones may occur from the onset of metabolic derangements/MS to arterial stiffness/atherosclerosis and CV morbidities. These episodes should be considered a warning sign of an ongoing and silent atherosclerotic process. The evaluation of cardiometabolic risk factors and MS components should be routine in the assessment of renal stone formers. This would allow for treatment and prevention of the development of CV complications, which are much more severe for the patient and for public health.
To assess whether NLRP3 gene promoter methylation was able to discriminate glucocorticoid (GC)‐resistant from GC‐sensitive idiopathic nephrotic syndrome (INS), patients with minimal change disease (MCD) or focal segmental glomerulosclerosis (FSGS), we measured the methylation level of NLRP3 promoter in DNA from peripheral blood cells of 10 adult patients with GC‐resistant FSGS already in hemodialysis and 18 patients with GC‐sensitive INS (13 MCD/5 FSGS) and in 21 pediatric patients with INS with MCD/FSGS before starting any treatment. Association of NLRP3 inflammasome with GC resistance was recapitulated in vitro in monocytic cell lines (THP‐1 and U937). In both adults and pediatric patients, NLRP3 promoter methylation was significantly reduced in GC‐resistant compared with GC‐sensitive patients. Indeed, NLRP3 methylation distinguished GC‐resistant and GC‐sensitive patients (area under the receiver operating characteristic curve [AUROC] 86.7% in adults, p = 0.00019, and 73.5% in children, p = 0.00097). NLRP3 knock‐down augmented sensitivity to GCs in THP‐1 cells, whereas NLRP3 inflammasome activation lowered GC receptor concentration, increasing GC resistance in U937 cells. Our results uncovered a new biological mechanism by which patients with INS may acquire GC resistance, that could be used in future as a novel noninvasive diagnostic tool. WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC? ☑ Approximately 80% of patients with idiopathic nephrotic syndrome (INS) respond to glucocorticoids, with the remaining 20% being steroid‐resistant. WHAT QUESTION DID THIS STUDY ADDRESS? ☑ Whether NLRP3 gene promoter methylation was able to discriminate glucocorticoid‐resistant from glucocorticoid (GC)‐sensitive INS. WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE? ☑ In both adults and children, NLRP3 promoter methylation was significantly reduced in leukocytes of patients with GC‐resistant compared with GC‐sensitive INS. NLRP3 inflammasome activation lowered GC receptor concentration and augmented GC resistance, whereas NLRP3 knockdown increased sensitivity to GCs in cell lines representative of monocytes (U937 and THP1). HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR TRANSLATIONAL SCIENCE? ☑ Our findings uncovered a new biological mechanism whereby patients with INS may develop resistance to GCs that could be used in the future as a novel noninvasive diagnostic tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.