The development of Imatinib mesylate (IM), which targets the oncogenic BCR-ABL fusion protein, has greatly improved the outcome of Chronic Myeloid Leukemia (CML) patients. However, BCR-ABL–positive progenitors can be detected in CML patients in complete cytogenetic response. Several evidence suggests that CML stem cells are intrinsically resistant to Tyrosine Kinase Inhibitors (TKI), and therefore they represent the most likely candidate responsible for disease relapse.In this work, we investigated the microRNA (miRNA) expression profile of different subpopulations of CML Leukemic Stem Cells (LSCs): Lin-CD34+CD38- and Lin-CD34-CD38- cells. These cell fractions have been previously shown to be endowed with TKI intrinsic resistance. Our analysis identified 33 common deregulated miRNAs in CML LSCs. Among those, 8 miRNAs were deregulated in CML independently from BCR-ABL kinase activity and therefore are likely to be involved in the BCR-ABL-independent resistance to TKI that characterizes CML LSCs. In particular, the up-regulation of miR-29a-3p and miR-660-5p observed in CML LSCs, led to the down-regulation of their respective targets TET2 and EPAS1 and conferred TKI-resistance to CML LSCs in vitro. On the other hand, miR-494-3p down-regulation in CML LSCs, leading to c-MYC up-regulation, was able to decrease TKI-induced apoptosis. These results demonstrate that aberrant miRNA expression in CML LSCs could contribute to the intrinsic TKI-resistance observed in these cell populations, and support the development of novel therapies aimed at targeting aberrantly regulated miRNAs or their targets in order to effectively eradicate CML LSCs.
Somatic mutations of calreticulin (CALR) have been described in approximately 60–80% of JAK2 and MPL unmutated Essential Thrombocythemia and Primary Myelofibrosis patients. CALR is an endoplasmic reticulum (ER) chaperone responsible for proper protein folding and calcium retention. Recent data demonstrated that the TPO receptor (MPL) is essential for the development of CALR mutant-driven Myeloproliferative Neoplasms (MPNs). However, the precise mechanism of action of CALR mutants haven’t been fully unraveled. In this study, we showed that CALR mutants impair the ability to respond to the ER stress and reduce the activation of the pro-apoptotic pathway of the unfolded protein response (UPR). Moreover, our data demonstrated that CALR mutations induce increased sensitivity to oxidative stress, leading to increase oxidative DNA damage. We finally demonstrated that the downmodulation of OXR1 in CALR-mutated cells could be one of the molecular mechanisms responsible for the increased sensitivity to oxidative stress mediated by mutant CALR. Altogether, our data identify novel mechanisms collaborating with MPL activation in CALR-mediated cellular transformation. CALR mutants negatively impact on the capability of cells to respond to oxidative stress leading to genomic instability and on the ability to react to ER stress, causing resistance to UPR-induced apoptosis.
Disease progression of myeloproliferative neoplasms is the result of increased genomic complexity. Since the ability to predict disease evolution is crucial for clinical decisions, we studied single-cell genomics and transcriptomics of CD34-positive cells from a primary myelofibrosis (PMF) patient who progressed to acute myeloid leukemia (AML) while receiving Ruxolitinib. Single-cell genomics allowed the reconstruction of clonal hierarchy and demonstrated that TET2 was the first mutated gene while FLT3 was the last one. Disease evolution was accompanied by increased clonal heterogeneity and mutational rate, but clones carrying TP53 and FLT3 mutations were already present in the chronic phase. Single-cell transcriptomics unraveled repression of interferon signaling suggesting an immunosuppressive effect exerted by Ruxolitinib. Moreover, AML transformation was associated with a differentiative block and immune escape. These results suggest that single-cell analysis can unmask tumor heterogeneity and provide meaningful insights about PMF progression that might guide personalized therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.