Biophysical and biochemical signals of material surfaces potently regulate cell functions and fate. In particular, micro- and nano-scale patterns of adhesion signals can finely elicit and affect a plethora of signaling pathways ultimately affecting gene expression, in a process known as mechanotransduction. Our fundamental understanding of cell-material signals interaction and reaction is based on static culturing platforms, i.e., substrates exhibiting signals whose configuration is time-invariant. However, cells in-vivo are exposed to arrays of biophysical and biochemical signals that change in time and space and the way cells integrate these might eventually dictate their behavior. Advancements in fabrication technologies and materials engineering, have recently enabled the development of culturing platforms able to display patterns of biochemical and biophysical signals whose features change in time and space in response to external stimuli and according to selected programmes. These dynamic devices proved to be particularly helpful in shedding light on how cells adapt to a dynamic microenvironment or integrate spatio-temporal variations of signals. In this work, we present the most relevant findings in the context of dynamic platforms for controlling cell functions and fate in vitro. We place emphasis on the technological aspects concerning the fabrication of platforms displaying micro- and nano-scale dynamic signals and on the physical-chemical stimuli necessary to actuate the spatio-temporal changes of the signal patterns. In particular, we illustrate strategies to encode material surfaces with dynamic ligands and patterns thereof, topographic relieves and mechanical properties. Additionally, we present the most effective, yet cytocompatible methods to actuate the spatio-temporal changes of the signals. We focus on cell reaction and response to dynamic changes of signal presentation. Finally, potential applications of this new generation of culturing systems for in vitro and in vivo applications, including regenerative medicine and cell conditioning are presented.
Material signals in the form of surface topographies, proved to be potent regulators of cell functions and fate, through mechanotransduction pathways. While a wealth of data is related to regular topographic patterns, i.e., lines, pit, or protrusions, there are comparatively few studies addressing the effects of circular, concentric patterns. Yet, curvatures affecting cell shape dramatically alter cell contractility and behavior. Additionally, the vast majority of patterned surfaces are static in nature and this prevents to understand how cells perceive and respond to the topographic patterns. Here, a technique is exploited for dynamically embossing micrometerscale circular pattern on azopolymeric substrates using a confocal laser microscope and it is analyzed how NIH‐3T3 reacts to the underlying topography in terms of changes in shape and mechanical properties. A characteristic pattern arrangement is found which most effectively alters cell morphology and orientation. Cells perceive the concentric pattern and reconfigure as fast as 2 h after pattern inscription. The changes in morphology also reflect dramatic changes in cell mechanics and cytoskeletal arrangements. The reported method is useful to manipulate cell shape and mechanics in a facile and cost‐effective manner and most importantly enables investigate mechanotransduction events dynamically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.