Human induced pluripotent stem cells (iPSCs) are used to generate models of human diseases that recapitulate the pathogenic process as it occurs in affected cells. Many differentiated cell types can currently be obtained from iPSCs, but no validated protocol is yet available to specifically generate primary proprioceptive neurons. Proprioceptors are affected in a number of genetic and acquired diseases, including Friedreich ataxia (FRDA). To develop a cell model that can be applied to conditions primarily affecting proprioceptors, we set up a protocol to differentiate iPSCs into primary proprioceptive neurons. We modified the dual-SMAD inhibition/WNT activation protocol, previously used to generate nociceptor-enriched cultures of primary sensory neurons from iPSCs, to favor instead the generation of proprioceptors. We succeeded in substantially enriching iPSC-derived primary sensory neuron cultures for proprioceptors, up to 50% of finally differentiated neurons, largely exceeding the proportion of 7.5% normally represented by these cells in dorsal root ganglia. We also showed that almost pure populations of proprioceptors can be purified from these cultures by fluorescence-activated cell sorting. Finally, we demonstrated that the protocol can be used to generate proprioceptors from iPSCs from FRDA patients, providing a cell model for this genetic sensory neuronopathy.
Epigenetic silencing in Friedreich ataxia (FRDA), induced by an expanded GAA triplet-repeat in intron 1 of the FXN gene, results in deficiency of the mitochondrial protein, frataxin. A lesser known extramitochondrial isoform of frataxin detected in erythrocytes, frataxin-E, is encoded via an alternate transcript (FXN-E) originating in intron 1 that lacks a mitochondrial targeting sequence. We show that FXN-E is deficient in FRDA, including in patient-derived cell lines, iPS-derived proprioceptive neurons, and tissues from a humanized mouse model. In a series of FRDA patients, deficiency of frataxin-E protein correlated with the length of the expanded GAA triplet-repeat, and with repeat-induced DNA hypermethylation that occurs in close proximity to the intronic origin of FXN-E. CRISPR-induced epimodification to mimic DNA hypermethylation seen in FRDA reproduced FXN-E transcriptional deficiency. Deficiency of frataxin E is a consequence of FRDA-specific epigenetic silencing, and therapeutic strategies may need to address this deficiency.
Human induced pluripotent stem cells (iPSCs) are used to generate models of human diseases that recapitulate the pathogenic process as it occurs in affected cells. Many differentiated cell types can currently be obtained from iPSCs, but no validated protocol is yet available to specifically generate primary proprioceptive neurons. Proprioceptors are affected in a number of genetic and acquired diseases, including Friedreich ataxia (FRDA). FRDA is a recessive neurodegenerative and systemic disease due to epigenetic suppression of frataxin (FXN) expression caused by the presence of expanded GAA repeats at the FXN locus. The most characteristic early neuropathologic finding in FRDA is the loss of large primary proprioceptive neurons in the dorsal root ganglia (DRGs), with associated loss of large myelinated fibers in the dorsal roots and in the posterior columns of the spinal cord. Both a developmental deficit and progressive neurodegeneration are thought to underlie the loss of proprioceptors in FRDA, though the relative contribution of these two components is unclear. The basis of the high specific vulnerability of proprioceptors in FRDA is also unknown. In order to address these open questions about FRDA pathogenesis and at the same time develop a cell model that can be applied to other conditions primarily affectingproprioceptors, we set up a protocol to differentiate iPSCs into primary proprioceptive neurons. We modified the dual-SMAD inhibition/WNT activation protocol, previously used to generate nociceptor-enriched cultures of primary sensory neurons from iPSCs, to favor instead the generation of proprioceptors. We succeeded in substantially enriching iPSCderived primary sensory neuron cultures in proprioceptors, largely exceeding the proportion normally represented by these cells in dorsal root ganglia. We also showed that almost pure populations of proprioceptors can be purified from these cultures by fluorescence-activated cell sorting. Finally, we demonstrated that iPSCs from a FRDA patient can generate normal appearing proprioceptors but have subtle differentiation deficits and more limited survival. Corresponding authorCorrespondence to Massimo Pandolfo.
Clinical trials in rare diseases as Friedreich ataxia (FRDA) offer special challenges, particularly when multiple treatments become ready for clinical testing. Regulatory health authorities have developed specific pathways for “orphan” drugs allowing the use of a validated biomarker for initial approval. This study aimed to identify changes in cerebrospinal fluid (CSF) proteins occurring in FRDA patients that may be potential biomarkers in therapeutic trials. CSF was obtained from 5 FRDA patients (4 females, 1 male) from the Brussels site of the European Friedreich Ataxia Consortium for Translational Studies (EFACTS). Two patients were ambulatory, three used a wheelchair. Residual CSF samples from 19 patients who had had a lumbar puncture as part of a diagnostic workup were used as controls. All CSF samples had normal cells, total protein and glucose levels. Proteins were identified by label-free data-dependent acquisition mass spectrometry (MS) coupled to micro-high performance liquid chromatography. We found 172 differentially expressed proteins (DEPs) (92 up, 80 down) between FRDA patients and controls at P < 0.05, 34 DEPs (28 up, 6 down) at P < 0.0001. Remarkably, there was no overlap between FRDA patients and controls for seven upregulated and six downregulated DEPs. Represented pathways included extracellular matrix organization, signaling, the complement cascade, adhesion molecules, synaptic proteins, neurexins and neuroligins. This study supports the hypothesis that the quantitative analysis CSF proteins may provide robust biomarkers for clinical trials as well as shed light on pathogenic mechanisms. Interestingly, DEPs in FA patients CSF point to neurodegeneration and neuroinflammation processes that may respond to treatment.
MAXXI Museum of Rome recently hosted the exhibition 'Istanbul. Passion, Joy, Fury', which is a deep and meaningful attempt to map gentrification and resistance in the urban space of old Byzantium without falling into populist stereotypes. Curated by Hou Hanru, Ceren Erdem, Elena Motisi and Donatella Saroli, the exhibition presented itself as an aesthetic reflection of an almost exclusively female production. It highlighted the dynamics of power between top-down impositions and bottom-up counteractions in a city which became an open-air laboratory of socio-spatial mutations in the architectural and cultural scene. Among the various works, the itinerant lecture-performance 'At The Edge of All Possibles' (Turkey, 2014) of Zeyno Pekünlü-a Turkish artist and lecturer at the Kültür University of Istanbul-stands out. Pekünlü was an active participant during the occupation and uprising in Gezi Park, who expresses from the outset a clear statement of intent: I would like to try going back to the basics of storytelling where the storyteller builds a story to preserve and spread the shared human experience: a story that anyone can connect to without knowing the facts, or where the events took place, and the chronology; a story that can only exist within something bigger than one's existence, only in a moment in which the body and the self dissolve in the body of the resistance, in which there is no 'I', and 'we' changes its meaning. The sole tool of the story would be the oldest tool of mankind's experience sharing: the human voice. The intention is to reiterate the importance of telling 'a story'-not 'the story'-when recovering the essence of storytelling as it was enshrined by Walter Benjamin in 1936. The German philosopher noticed that encountering storytellers was becoming increasingly rare, thus enabling the logic of journalistic information to cloud the voice of human experience:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.