The effects of COVID-19 containment measures on the emotional and behavioral development of preschoolers are not clear. We investigated them within an ongoing longitudinal project including typically developing children (TD) and children at high familial risk for neurodevelopmental disorders (HR-NDD) who were potentially more vulnerable. The study included ninety children aged 2–6 years (TD = 48; HR-NDD = 42). Before the emergency phase (T0), all children received a clinical assessment, including the parent questionnaire Child Behavior Checklist for Ages 1.5–5 (CBCL 1.5–5). The same questionnaire was filled out again during the emergency (T1), together with an ad-hoc questionnaire investigating environmental factors characterizing the specific period. Changes in the CBCL profiles between T0 and T1 were evaluated. Overall, irrespective of familial risk, the average T-scores on specific CBCL scales at T1 were higher than at T0. Associations emerged between delta scores reflecting worsening scores on specific CBCL scales and clinical and environmental factors. Our results confirmed the negative impact of the lockdown on preschool children’s emotional/behavioral profiles, and highlight the need for strategic approaches in the age range of 2–6 years, especially for more susceptible children owing to environmental factors and pre-existing emotional problems.
Atypical sensory responses are included in the diagnostic criteria of autism spectrum disorder (ASD). Autistic individuals perform poorly during conditions that require integration across multiple sensory modalities such as audiovisual (AV) integration. Previous research investigated neural processing of AV integration in infancy. Yet, this has never been studied in infants at higher likelihood of later ASD (HR) using neurophysiological (EEG/ERP) techniques. In this study, we investigated whether ERP measures of AV integration differentiate HR infants from low‐risk (LR) infants and whether early AV integration abilities are associated with clinical measures of sensory responsiveness. At age 12 months, AV integration in HR (n = 21) and LR infants (n = 19) was characterized in a novel ERP paradigm measuring the McGurk effect, and clinical measures of sensory responsiveness were evaluated. Different brain responses over the left temporal area emerge between HR and LR infants, specifically when AV stimuli cannot be integrated into a fusible percept. Furthermore, ERP responses related to integration of AV incongruent stimuli were found to be associated with sensory responsiveness, with reduced effects of AV incongruency being associated with reduced sensory reactivity. These data suggest that early identification of AV deficits may pave the way to innovative therapeutic strategies for the autistic symptomatology. Further replications in independent cohorts are needed for generalizability of findings.
Previous evidence has shown that early auditory processing impacts later linguistic development, and targeted training implemented at early ages can enhance auditory processing skills, with better expected language development outcomes. This study focuses on typically developing infants and aims to test the feasibility and preliminary efficacy of music training based on active synchronization with complex musical rhythms on the linguistic outcomes and electrophysiological functioning underlying auditory processing. Fifteen infants participated in the training (RTr+) and were compared with two groups of infants not attending any structured activities during the same time frame (RTr−, N = 14). At pre- and post-training, expressive and receptive language skills were assessed using standardized tests, and auditory processing skills were characterized through an electrophysiological non-speech multi-feature paradigm. Results reveal that RTr+ infants showed significantly broader improvement in both expressive and receptive pre-language skills. Moreover, at post-training, they presented an electrophysiological pattern characterized by shorter latency of two peaks (N2* and P2), reflecting a neural change detection process: these shifts in latency go beyond those seen due to maturation alone. These results provide preliminary evidence on the efficacy of our training in improving early linguistic competences, and in modifying the neural underpinnings of auditory processing in infants.
Neural entrainment is defined as the process whereby brain activity, and more specifically neuronal oscillations measured by EEG, synchronize with exogenous stimulus rhythms. Despite the importance that neural oscillations have assumed in recent years in the field of auditory neuroscience and speech perception, in human infants the oscillatory brain rhythms and their synchronization with complex auditory exogenous rhythms are still relatively unexplored. In the present study, we investigate infant neural entrainment to complex non-speech (musical) and speech rhythmic stimuli; we provide a developmental analysis to explore potential similarities and differences between infants’ and adults’ ability to entrain to the stimuli; and we analyze the associations between infants’ neural entrainment measures and the concurrent level of development. 25 8-month-old infants were included in the study. Their EEG signals were recorded while they passively listened to non-speech and speech rhythmic stimuli modulated at different rates. In addition, Bayley Scales were administered to all infants to assess their cognitive, language, and social-emotional development. Neural entrainment to the incoming rhythms was measured in the form of peaks emerging from the EEG spectrum at frequencies corresponding to the rhythm envelope. Analyses of the EEG spectrum revealed clear responses above the noise floor at frequencies corresponding to the rhythm envelope, suggesting that – similarly to adults – infants at 8 months of age were capable of entraining to the incoming complex auditory rhythms. Infants’ measures of neural entrainment were associated with concurrent measures of cognitive and social-emotional development.
Per favore compili il seguente questionario su come è di solito vostro figlio. Cerchi per favore di rispondere a ogni domanda. Se il comportamento è raro (per esempio lo ha visto una o due volte), per favore risponda come se il bambino non lo facesse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.