Dairy farming is increasingly affected by the digital revolution. To respond to current challenges—such as environmental, economic, and social sustainability—new technologies must be adopted, entering the perspective of precision livestock farming. This is made possible by the development of countless sensors to be adopted in the barn. The technology that is affecting various aspects of dairy cattle breeding is certainly near infrared spectroscopy (NIRS) which is versatile and can be used online/inline to evaluate and control the critical points of the production process by entering the PAT (process analytical technology). In the barn, NIRS currently can obtain information on the chemical-physical composition of raw materials, total mixed ration (TMR), feces and digestibility, chemical and technological analysis of milk. All this in a short time by eliminating the waiting times for analysis response and costs, allowing an improvement of livestock management. Many studies affirm the validity of NIRS as a reliable and predictive technology against multiple relevant parameters in matrices such as raw feed, TMR, feces, and milk. This review highlights the usefulness of NIRS technology in dairy farm with particular attention to portable instrumentation usable directly on the farm.
Increases in temperature and the greater incidence of extreme events are the consequences of the climate change that is taking place on planet Earth. High temperatures create severe discomfort to animal farms as they are unable to efficiently dissipate their body heat, and for this, they implement mechanisms to reduce the production of endogenous heat (reducing feed intake and production). In tropical and subtropical countries, where buffalo breeding is more widespread, there are strong negative consequences of heat stress (HS) on the production and quality of milk, reproduction, and health. The increase in ambient temperature is also affecting temperate countries in which buffalo farms are starting to highlight problems due to HS. To counteract HS, it is possible to improve buffalo thermotolerance by using a genetic approach, but even if it is essential, it is a long process. Two other mitigation approaches are nutritional strategies, such as the use of vitamins, minerals, and antioxidants and cooling strategies such as shade, fans, sprinklers, and pools. Among the cooling systems that have been evaluated, wallowing or a combination of fans and sprinklers, when wallowing is not available, are good strategies, even if wallowing was the best because it improved the production and reproduction performance and the level of general well-being of the animals.
Buffaloes are raised mainly to obtain milk that is nutritionally very rich. The technological characteristics of buffalo milk are optimal for processing into cheese, and it is mainly used to produce mozzarella cheese. Under stressful conditions, buffaloes, like other animals, produce milk qualitatively poorly. The stressors that can affect the quality of production are, in addition to other factors, deficiencies in nutrients such as vitamins, antioxidants, and minerals. In this study, we evaluated the effect of antioxidant supplementation on the quality of buffalo milk. Sixty-six buffaloes were enrolled and subdivided into two balanced groups of 33 each. The ZnSe group received 0.2 kg/head/day of Bufalo Plus® containing antioxidants and barley meal, CaCO3 and MgCO3 mix; the control group was supplemented with 0.2 kg/head/day of barley meal, CaCO3 and MgCO3 mix. The two groups were fed ad libitum with a total mixed ration (TMR). The amount of diet distributed was recorded daily, and the residue in the trough manger was recorded three times per week. TMR samples were taken every two weeks for each group. Daily milk yield was recorded twice a week. Milk samples were collected every four weeks and analysed for chemical and technological properties. Furthermore, milk total antioxidant capacity was determined. The results obtained showed that the antioxidant supplement had no effect on feed intake, feeding behaviour, and feed efficiency. The treatment positively influenced milk production while it did not affect the chemical characteristics of the milk. In addition, the supplement of antioxidants improved the milk clotting properties (MCP). The supplement did not affect the antioxidant activity of the milk.
In recent years, due to the significant increase in hypertension, peptides which are able to reduce blood pressure have gained special interest by scientific research and food industry. Several bioactive peptides with ascertained ACE-inhibitory activity have been found in Parmigiano Reggiano (PR) cheese and/or mixtures deriving from its digestion in vitro, and this may be predictive of itspotential antihypertensive effect in vivo. This study investigated the long-term effect of feeding (PR) cheese on blood pressure (BP) of spontaneously hypertensive rats (SHRs). A total of 30 male SHRs, 13 weeks old, were subdivided into 6 groups balanced for body weight and BP, to receive dailydietary supplementation with: 0.1–0.2–0.4–0.6 g PR/rat, captopril, and water. Systolic and diastolic BP were recorded every two weeks, for 10 weeks. Blood samples were collected at the end of the trial. Dietary integration with PR led to a transitory reduction in rats’ pressure in the first 35 days of treatment and pressure decreased in a dose-dependent manner. In the second part of the study, the beneficial effect of PR antihypertensive peptides may have been masked and reduced by the increase in BP of rats linked to the rise in age of animals. No PR derived peptides were detected in rats’ serum. Highlights: Parmigiano Reggiano (PR) cheese led to a transitory reduction in rats’ pressure in the first 35 days of treatment. This effect was PR dose dependent. The highest amounts of PR tested did not increase both systolic and diastolic blood pressures of hypertensive rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.