ClinicalTrials.gov NCT01070355.
The Notch cascade is a fundamental and highly conserved pathway able to control cell-fate. The Notch pathway arises from the interaction of one of the Notch receptors (Notch1–4) with different types of ligands; in particular, the Notch pathway can be activated canonically (through the ligands Jagged1, Jagged2, DLL1, DLL3 or DLL4) or non-canonically (through various molecules shared by other pathways). In the context of tumor biology, the deregulation of Notch signaling is found to be crucial, but it is still not clear if the activation of this pathway exerts a tumor-promoting or a tumor suppressing function in different cancer settings. Untill now, it is well known that the inflammatory compartment is critically involved in tumor progression; however, inflammation, which occurs as a physiological response to damage, can also drive protective processes toward carcinogenesis. Therefore, the role of inflammation in cancer is still controversial and needs to be further clarified. Interestingly, recent literature reports that some of the signaling molecules modulated by the cells of the immune system also belong to or interact with the canonical and non-canonical Notch pathways, delineating a possible link between Notch activation and inflammatory environment. In this review we analyze the hypothesis that specific inflammatory conditions can control the activation of the Notch pathway in terms of biological effect, partially explaining the dichotomy of both phenomena. For this purpose, we detail the molecular links reported in the literature connecting inflammation and Notch signaling in different types of tumor, with a particular focus on colorectal carcinogenesis, which represents a perfect example of context-dependent interaction between malignant transformation and immune response.
Inflammatory bowel diseases are associated with increased risk of developing colitis‐associated colorectal cancer (CAC). Epidemiological data show that the consumption of ω‐3 polyunsaturated fatty acids (ω‐3 PUFAs) decreases the risk of sporadic colorectal cancer (CRC). Importantly, recent data have shown that eicosapentaenoic acid‐free fatty acid (EPA‐FFA) reduces polyp formation and growth in models of familial adenomatous polyposis. However, the effects of dietary EPA‐FFA are unknown in CAC. We tested the effectiveness of substituting EPA‐FFA, for other dietary fats, in preventing inflammation and cancer in the AOM‐DSS model of CAC. The AOM‐DSS protocols were designed to evaluate the effect of EPA‐FFA on both initiation and promotion of carcinogenesis. We found that EPA‐FFA diet strongly decreased tumor multiplicity, incidence and maximum tumor size in the promotion and initiation arms. Moreover EPA–FFA, in particular in the initiation arm, led to reduced cell proliferation and nuclear β‐catenin expression, whilst it increased apoptosis. In both arms, EPA‐FFA treatment led to increased membrane switch from ω‐6 to ω‐3 PUFAs and a concomitant reduction in PGE2 production. We observed no significant changes in intestinal inflammation between EPA‐FFA treated arms and AOM‐DSS controls. Importantly, we found that EPA‐FFA treatment restored the loss of Notch signaling found in the AOM‐DSS control and resulted in the enrichment of Lactobacillus species in the gut microbiota. Taken together, our data suggest that EPA‐FFA is an excellent candidate for CRC chemoprevention in CAC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.