In this study, we assess the possibility of using ground penetrating radar (GPR) and electrical resistivity tomography (ERT) as indirect non-destructive techniques for root detection. Two experimental sites were investigated: a poplar plantation [mean height of plants 25.7 m, diameter at breast height (dbh) 33 cm] and a pinewood forest mainly composed of Pinus pinea L. and Pinus pinaster Ait. (mean height 17 m, dbh 29 cm). GPR measures were taken using antennas of 900 and 1500 MHz applied in square and circular grids. ERT was previously tested along 2-D lines, compared with GPR sections and direct observation of the roots, and then using a complete 3-D acquisition technique. Three-dimensional reconstructions using grids of electrodes centred and evenly spaced around the tree were used in all cases (poplar and pine), and repeated in different periods in the pine forest (April, June and September) to investigate the influence of water saturation on the results obtainable. The investigated roots systems were entirely excavated using AIR-SPADE Series 2000. In order to acquire morphological information on the root system, to be compared with the GPR and ERT, poplar and pine roots were scanned using a portable on ground scanning LIDAR. In test sections analysed around the poplar trees, GPR with a high frequency antenna proved to be able to detect roots with very small diameters and different angles, with the geometry of survey lines ruling the intensity of individual reflectors. The comparison between 3-D images of the extracted roots obtained with a laser scan data point cloud and the GPR profile proved the potential of high density 3-D GPR in mapping the entire system in unsaturated soil, with a preference for sandy and silty terrain, with problems arising when clay is predominant. Clutter produced by gravel and pebbles, mixed with the presence of roots, can also be sources of noise for the GPR signals. The work performed on the pine trees shows that the shape, distribution and volume of roots system, can be coupled to the 3-D electrical resistivity variation of the soil model map. Geophysical surveys can be a useful approach to root investigation in describing both the shape and behaviour of the roots in the subsoil.
Abstract. Within the JRC Kyoto Experiment in the Regional Park and UN-Biosphere Reserve "Parco Ticino" (North-Italy, near Pavia), the soil carbon stocks and fluxes of CO2, N2O, and CH4 were measured in a poplar plantation in comparison with a natural mesohygrophilous deciduous forest nearby, which represents the pristine land cover of the area. Soil fluxes were measured using the static and dynamic closed chamber techniques for CH4 N2O, and CO2, respectively. We made further a pedological study to relate the spatial variability found with soil parameters. Annual emission fluxes of N2O and CO2 and deposition fluxes of CH4 were calculated for the year 2003 for the poplar plantation and compared to those measured at the natural forest site. N2O emissions at the poplar plantation were 0.15$plusmn;0.1 g N2O m-2 y-1 and the difference to the emissions at the natural forest of 0.07±0.06 g N2O m-2 y-1 are partly due to a period of high emissions after the flooding of the site at the end of 2002. CH4 consumption at the natural forest was twice as large as at the poplar plantation. In comparison to the relict forest, carbon stocks in the soil under the poplar plantation were depleted by 61% of surface (10 cm) carbon and by 25% down the profile under tillage (45 cm). Soil respiration rates were not significant different at both sites with 1608±1053 and 2200±791 g CO2 m-2 y-1 at the poplar plantation and natural forest, respectively, indicating that soil organic carbon is much more stable in the natural forest. In terms of the greenhouse gas budget, the non-CO2 gases contributed minor to the overall soil balance with only 0.9% (N2O) and -0.3% (CH4 of CO2-eq emissions in the natural forest, and 2.7% (N2O) and -0.2% of CO2-eq. emissions in the poplar plantation. The very high spatial variability of soil fluxes within the two sites was related to the morphology of the floodplain area, which was formed by the historic course of the Ticino river and led to a small-scale (tenth of meters) variability in soil texture and to small-scale differences in elevation. Differences of site conditions are reflected by differences of inundation patterns, ecosystem productivity, CO2 and N2O emission rates, and soil contents of carbon and nitrogen. Additional variability was observed during a flooding event and after fertilisation at the poplar site. Despite of this variability, the two sites are comparable as both originate from alluvial deposits. The study shows that changes in soil carbon stocks and related fertility are the most visible phenomena after 40 years of land use change from a pristine forest to a fast growing poplar plantation. Therefore, the conservation and careful management of existing carbon stocks deserves highest priority in the context of the Kyoto Protocol.
The introduction of invasive alien plant species (IAPS) can modify plant-soil feedback, resulting in an alteration of the abiotic and biotic characteristics of ecosystems. Prunus serotina, Quercus rubra and Robinia pseudoacacia are IAPS of European temperate forests, where they can become dominant and suppress the native biodiversity. Assuming that the establishment of these invasive species may alter native forest ecosystems, this study comparatively assessed their impact on ecosystems. This study further investigated plant communities in 12 forest stands, dominated by the three IAPS and native trees, Quercus robur and Carpinus betulus (three plots per forest type), in Northern Italy, and collected soil samples. The relationships between the invasion of the three IAPS and modifications of humus forms, soil chemical properties, soil biological quality, bacterial activity and plant community structure and diversity (α-, β-, and γ-diversity) were assessed using one-way ANOVA and redundancy analyses (RDA). Our comparative study demonstrated that invaded forests often had unique plant and/or soil properties, relative to native forests, and the degree of dissimilarity depended on the invasive species. Particularly, Q. rubra is related to major negative impacts on soil organic horizons and low/modified levels of microarthropod and plant biodiversity. R. pseudoacacia is associated with an altered base content of soil and, in turn, with positive feedback to the soil biological quality (QBS-ar) and plant diversity, but with a high cover compared with other alien plant species. P. serotina is associated with intermediate impacts and exhibits a plant species assemblage that is more similar to those of native forest stands. Our work suggests impact-based management decisions for the three investigated IAPS, since their effects on the diversity and composition of resident ecosystems are very different.
Most of the plants employed to remove metals from contaminated soils are annuals and have a seed-to-seed life cycle of a few months, usually over spring and summer. Consequently, for most of the year, fields are not actively cleaned but are completely bare and subject to erosion by water and wind. The objective of this study was to evaluate the benefits of using Lupinus albus as a winter crop in a rotation sequence with a summer crop ideally selected for phytoextraction, such as industrial hemp. Lupin plants were grown in two alkaline soil plots (heavy metal-contaminated and uncontaminated) of approximately 400 m(2) each after the cultivation and harvest of industrial hemp. A smaller-scale parallel pot experiment was also performed to better understand the lupin behavior in increasing concentrations of Cd, Cu, Ni and Zn. White lupin grew well in alkaline conditions, covering the soil during the winter season. In few months plants were approximately 40-50 cm high in both control and contaminated plots. In fields where the bioavailable fraction of metals was low (less than 12%), plants showed a high tolerance to these contaminants. However, their growth was affected in some pot treatments in which the concentrations of assimilable Cu, Zn and Ni were higher, ranging from approximately 40-70% of the total concentrations. The lupin's ability to absorb heavy metals and translocate them to shoots was negligible with respect to the magnitude of contamination, suggesting that this plant is not suitable for extending the period of phytoextraction. However, it is entirely exploitable as green manure, avoiding the application of chemical amendments during phytoremediation. In addition, in polluted fields, white lupin cultivation increased the soil concentration of live bacteria and the bioavailable percentage of metals. On average live bacteria counts per gram of soil were 65×10(6)±18×10(6) and 99×10(6)±22*10(6) before and after cultivation, respectively. The percentages of bioavailable Cu, Pb, Ni, Zn and Cr, which were 5.7±0.7, 5.3±1.7, 1.2±0.1, 12±1.5 and 0.1±0.02%, respectively, before lupin growth, increased to 9.6±1.6, 7±2, 2±0.3, 14±1.5 and 0.1±0.02% after lupin harvest. On the whole, our results indicate that the winter cultivation of white lupin in sequence with a metal-accumulator summer crop can improve the recovery of soil quality during the phytoextraction period. It improves the safety of the area, limiting additional ecological and human health problems, and enhances soil health by avoiding the use of chemical amendments and by increasing the levels of viable microorganisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.