Plants undergo several developmental transitions during their life cycle. In grapevine, a perennial woody fruit crop, the transition from vegetative/green-to-mature/woody growth involves transcriptomic reprogramming orchestrated by a small group of genes encoding regulators, but the underlying molecular mechanisms are not fully understood. We investigated the function of the transcriptional regulator VviNAC33 by generating and characterizing transgenic overexpressing grapevine lines and a chimeric repressor, and by exploring its putative targets through a DNA affinity purification sequencing (DAP-seq) approach combined with transcriptomic data. We demonstrated that VviNAC33 induces leaf de-greening, inhibits organ growth and directly activates the expression of STAY-GREEN PROTEIN 1 (SGR1), which is involved in Chl and photosystem degradation, and AUTOPHAGY 8f (ATG8f), which is involved in the maturation of autophagosomes. Furthermore, we show that VviNAC33 directly inhibits AUXIN EFFLUX FACILITATOR PIN1, RopGEF1 and ATP SYNTHASE GAMMA CHAIN 1T (ATPC1), which are involved in photosystem II integrity and activity. Our results show that VviNAC33 plays a major role in terminating photosynthetic activity and organ growth as part of a regulatory network governing the vegetative-to-mature phase transition.
Grapevine (Vitis vinifera L.) is one of the most widely cultivated fruit crops because the winemaking industry has huge economic relevance worldwide. Uncovering the molecular mechanisms controlling the developmental progression of plant organs will prove essential for maintaining high-quality grapes, expressly in the context of climate change, which impairs the ripening process. Through a deep inspection of transcriptomic data, we identified VviNAC60, a member of the NAC transcription factor family, as a putative regulator of grapevine organ maturation. We explored VviNAC60 binding landscapes through DNA affinity purification followed by sequencing and compared bound genes with transcriptomics datasets from grapevine plants stably and transiently overexpressing VviNAC60 to define a set of high-confidence targets. Among these, we identified key molecular markers associated with organ senescence and fruit ripening. Physiological, metabolic, and promoter activation analyses showed that VviNAC60 induces chlorophyll degradation and anthocyanin accumulation through the up-regulation of STAY-GREEN PROTEIN 1 (VviSGR1) and VviMYBA1, respectively, with the latter being up-regulated through a VviNAC60-VviNAC03 regulatory complex. Despite sharing a closer phylogenetic relationship with senescence-related homologues to the NAC transcription factor AtNAP, VviNAC60 complemented the non-ripening(nor) mutant phenotype in tomato (Solanum lycopersicum), suggesting a dual role as an orchestrator of both ripening- and senescence-related processes. Our data support VviNAC60 as a regulator of processes initiated in the grapevine vegetative- to mature-phase organ transition and therefore as a potential target for enhancing the environmental resilience of grapevine by fine-tuning the duration of the vegetative phase.
Grapevine is a woody temperate perennial plant and one of the most important fruit crops with global relevance in both the fresh fruit and winemaking industries. Unfortunately, global warming is affecting viticulture by altering developmental transitions and fruit maturation processes. In this context, uncovering the molecular mechanisms controlling the onset and progression of ripening could prove essential to maintain high-quality grapes and wines. Through a deep inspection of previously published transcriptomic data we identified the NAC family member VviCARPO (Controlled Adjustment of Ripening and maturation of Plant Organs) as a key regulator of grapevine maturation whose induction precedes the expression of well-known ripening associated genes. We explored VviCARPO binding landscapes through DAP-seq and overlapped its bound genes with transcriptomics datasets from stable and transient VviCARPO overexpressing grapevine plants to define a set of high-confidence targets. Among these, we identified key molecular ripening markers. Physiological, metabolic and promoter activation analyses showed that VviCARPO induces chlorophyll degradation and anthocyanin accumulation through the up-regulation of VviSGR1 and VviMYBA1, respectively, with the latter being up-regulated through a VviCARPO-VviNAC03 regulatory complex. Despite showing a closer phylogenetic relationship to senescent-related AtNAP homologues, VviCARPO complemented the nor mutant phenotype in tomato, suggesting it may have acquired a dual role as an orchestrator of both ripening- and senescence-related processes. Our data supports CARPO as a master regulator of the grapevine vegetative-to-mature phase organ transition and therefore an essential target for insuring fruit quality and environmental resilience.SIGNIFICANT STATEMENTCARPO is a grape NAC transcription factor central to fruit ripening and tissue senescence. This regulator influences multiple biological pathways common to both processes including cell wall metabolism, chlorophyll degradation, pigment production and hormone synthesis/signaling through regulation of their key genes. As various external stresses and changing climatic conditions influence vegetative growth and berry ripening, CARPO could prove a useful genetic and breeding target towards maintaining necessary crop performance and fruit-quality characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.