Protein–peptide interactions (PpIs) are a subset of the overall protein–protein interaction (PPI) network in the living cell and are pivotal for the majority of cell processes and functions. High-throughput methods to detect PpIs and PPIs usually require time and costs that are not always affordable. Therefore, reliable in silico predictions represent a valid and effective alternative. In this work, a new algorithm is described, implemented in a freely available tool, i.e., “PepThreader”, to carry out PPIs and PpIs prediction and analysis. PepThreader threads multiple fragments derived from a full-length protein sequence (or from a peptide library) onto a second template peptide, in complex with a protein target, “spotting” the potential binding peptides and ranking them according to a sequence-based and structure-based threading score. The threading algorithm first makes use of a scoring function that is based on peptides sequence similarity. Then, a rerank of the initial hits is performed, according to structure-based scoring functions. PepThreader has been benchmarked on a dataset of 292 protein–peptide complexes that were collected from existing databases of experimentally determined protein–peptide interactions. An accuracy of 80%, when considering the top predicted 25 hits, was achieved, which performs in a comparable way with the other state-of-art tools in PPIs and PpIs modeling. Nonetheless, PepThreader is unique in that it is able at the same time to spot a binding peptide within a full-length sequence involved in PPI and model its structure within the receptor. Therefore, PepThreader adds to the already-available tools supporting the experimental PPIs and PpIs identification and characterization.
Protein–protein interactions (PPIs) play a fundamental role in various biological functions; thus, detecting PPI sites is essential for understanding diseases and developing new drugs. PPI prediction is of particular relevance for the development of drugs employing targeted protein degradation, as their efficacy relies on the formation of a stable ternary complex involving two proteins. However, experimental methods to detect PPI sites are both costly and time-intensive. In recent years, machine learning-based methods have been developed as screening tools. While they are computationally more efficient than traditional docking methods and thus allow rapid execution, these tools have so far primarily been based on sequence information, and they are therefore limited in their ability to address spatial requirements. In addition, they have to date not been applied to targeted protein degradation. Here, we present a new deep learning architecture based on the concept of graph representation learning that can predict interaction sites and interactions of proteins based on their surface representations. We demonstrate that our model reaches state-of-the-art performance using AUROC scores on the established MaSIF dataset. We furthermore introduce a new dataset with more diverse protein interactions and show that our model generalizes well to this new data. These generalization capabilities allow our model to predict the PPIs relevant for targeted protein degradation, which we show by demonstrating the high accuracy of our model for PPI prediction on the available ternary complex data. Our results suggest that PPI prediction models can be a valuable tool for screening protein pairs while developing new drugs for targeted protein degradation.
Protein-protein interactions (PPIs) play a fundamental role in various biological functions; thus, detecting PPI sites is essential for understanding diseases and developing new drugs. PPI prediction is of particular relevance for the development of drugs employing targeted protein degradation, as their efficacy relies on the formation of a stable ternary complex involving two proteins. However, experimental methods to detect PPI sites are both costly and time-intensive. In recent years, computer-aided approaches have been developed as screening tools, but these tools are primarily based on sequence information and are therefore limited in their ability to address spatial requirements and have thus far not been applied to targeted protein degradation. Here, we present a new deep learning architecture based on the concept of graph representation learning that can predict interaction sites and interactions of proteins based on their surface representations. We demonstrate that our model reaches state-of-the-art performance using AUROC scores on the established MaSIF dataset. We furthermore introduce a new dataset with more diverse protein interactions and show that our model generalizes well to this new data. These generalization capabilities allow our model to predict the PPIs relevant for targeted protein degradation, which we show by demonstrating the high accuracy of our model for PPI prediction on the available ternary complex data. Our results suggest that PPI prediction models can be a valuable tool for screening protein pairs while developing new drugs for targeted protein degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.