Several experimental apparatuses have been designed in the past to evaluate the effectiveness of under-platform dampers. Most of these experimental setups allow to measure the overall damper efficiency in terms of reduction of vibration amplitude in turbine blades. The experimental data collected with these test rigs do not increase the knowledge about the damper dynamics, and therefore, the uncertainty on the damper behavior remains a big issue. In this paper, a different approach to evaluate the damper–blade interaction has been put forward. A test rig has been purposely designed to accommodate a single blade and two under-platform dampers. One side of each damper is in contact with a ground support specifically designed to measure two independent forces on the damper. In this way, both the normal and the tangential force components in the damper–blade contact can be inferred. Damper kinematics is rebuilt by using the relative displacement measured between damper and blade. This paper describes the concept behind the new approach, shows the details of the new test rig, and discusses the blade frequency response from a new point of view.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.