We establish the higher differentiability of integer order of solutions to a class of obstacle problems assuming that the gradient of the obstacle possesses an extra integer differentiability property.
We deal with the case in which the solutions to the obstacle problems satisfy a variational inequality of the form\int_{\Omega}\langle\mathcal{A}(x,Du),D(\varphi-u)\rangle\,dx\geq 0\quad\text{%
for all }\varphi\in\mathcal{K}_{\psi}(\Omega).The main novelty is that the operator {\mathcal{A}} satisfies the so-called {p,q}-growth conditions with p and q linked by the relation\frac{q}{p}<1+\frac{1}{n}-\frac{1}{r},for {r>n}.
Here {\psi\in W^{1,p}(\Omega)} is a fixed function, called obstacle, for which we assume {D\psi\in W^{1,2q-p}_{\mathrm{loc}}(\Omega)}, and {\mathcal{K}_{\psi}=\{w\in W^{1,p}(\Omega):w\geq\psi\text{ a.e. in }\Omega\}} is the class of admissible functions.
We require for the partial map {x\mapsto\mathcal{A}(x,\xi\/)} a higher differentiability of Sobolev order in the space {W^{1,r}}, with {r>n} satisfying the condition above.
We establish higher differentiability results of integer order for solutions to a class of obstacle problems with nearly linear growth, provided that we assume a suitable extra integer differentiability property of Sobolev order on the gradient of the obstacle. Our results cover a large class of models for which the Lavrentiev phenomenon does not appear.
The full quasistatic thermomechanical system of PDEs, describing water diffusion with the possibility of freezing and melting in a visco-elasto-plastic porous solid, is studied in detail under the hypothesis that the pressure-saturation hysteresis relation is given in terms of the Preisach hysteresis operator. The resulting system of balance equations for mass, momentum, and energy coupled with the phase dynamics equation is shown to admit a global solution under general assumptions on the data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.