The sight is one of the five senses allowing an autonomous and high-quality life, so that alterations of any ocular component may result in several clinical phenotypes (from conjunctivitis to severe vision loss and irreversible blindness). Most parts of clinical phenotypes have been significantly associated with mutations in genes regulating the normal formation and maturation of the anterior segments of the eye. Among the eye anterior segment disorders, special attention is given to Glaucoma as it represents one of the major causes of bilateral blindness in the world, with an onset due to Mendelian or multifactorial genetic-causative traits. This review will point out the attention on the Primary Congenital Glaucoma (PCG), which is usually transmitted according to an autosomal-recessive inheritance pattern. Taking into consideration the genetic component of the PCG, it is possible to observe a strong heterogeneity concerning the disease-associated loci (GLC3), penetrance defects, and expressivity of the disease. Given the strong PGC heterogeneity, pre- and posttest genetic counseling plays an essential role in the achievement of an appropriate management of PCG, in terms of medical, social, and psychological impact of the disease.
BackgroundThe knowledge of the individual genetic “status” in the prenatal era is particularly relevant in the case of positive family history for genetic diseases, in advanced maternal age and in the general screening for foetal abnormalities. In this context, here, we report an innovative molecular assay which utilizes the cell-free foetal DNA (cffDNA) as a source for the early and fast detection of the foetal sex. The study involved 132 pregnant women in their first 3 months of pregnancy, who agreed to give a blood sample. All the collected samples were immediately subjected to the separation of the plasma, which was utilized for the extraction of the cffDNA. Successively, the extracted cffDNA was analysed by a quantitative PCR (qPCR) method based on Plexor-HY chemistry, which is able to simultaneously identify, quantify and discriminate the autosomal DNA from the sex-linked DNA.ResultsOverall, the Plexor-HY assay demonstrated to be sensitive and specific for the determination of low-template DNA, such as the cffDNA. In fact, the Plexor-HY assay has been successfully performed in all the samples, identifying 70 males and 62 females. As the foetal sex can be provided in 120 min just by utilizing a maternal blood sample as cffDNA source, the assay represents a very fast, safe and non-invasive prenatal method.ConclusionsThe possibility of determining the foetal sex in the early prenatal life consents the application of our assay as a helpful screening test for subjects and families at risk of sex-linked disorders. Moreover, the early knowledge of the foetal sex may be of great help even for the specialist, who might promptly advise the patients concerning the foetal risk of inheriting sex-linked disorders and the clinical utility of performing an invasive prenatal diagnosis.Electronic supplementary materialThe online version of this article (doi:10.1186/s40246-016-0066-2) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.