SUMMARYIn the context of a cellular therapy for diabetes, methods for pancreatic progenitor expansion and subsequent differentiation into insulin-producing beta cells would be extremely valuable. Here we establish three-dimensional culture conditions in Matrigel that enable the efficient expansion of dissociated mouse embryonic pancreatic progenitors. By manipulating the medium composition we generate either hollow spheres, which are mainly composed of pancreatic progenitors, or complex organoids that spontaneously undergo pancreatic morphogenesis and differentiation. The in vitro maintenance and expansion of pancreatic progenitors require active Notch and FGF signaling, thus recapitulating in vivo niche signaling interactions. Our experiments reveal new aspects of pancreas development, such as a community effect by which small groups of cells better maintain progenitor properties and expand more efficiently than isolated cells, as well as the requirement for three-dimensionality. Finally, growth conditions in chemically defined biomaterials pave the way for testing the biophysical and biochemical properties of the niche that sustains pancreatic progenitors.
Mitochondrial dysfunction is a hallmark of multiple metabolic complications. Physical activity is known to increase mitochondrial content in skeletal muscle, counteracting age-related decline in muscle function and protecting against metabolic and cardiovascular complications. Here, we investigated the effect of 4 months of exercise training on skeletal muscle mitochondria electron transport chain complexes and supercomplexes in 26 healthy, sedentary older adults. Exercise differentially modulated respiratory complexes. Complex I was the most upregulated complex and not stoichiometrically associated to the other complexes. In contrast to the other complexes, complex I was almost exclusively found assembled in supercomplexes in muscle mitochondria. Overall, supercomplex content was increased after exercise. In particular, complexes I, III, and IV were redistributed to supercomplexes in the form of I+III+IV. Taken together, our results provide the first evidence that exercise affects the stoichiometry of supercomplex formation in humans and thus reveal a novel adaptive mechanism for increased energy demand.
These data suggest the following: 1) aging per se is not the primary culprit leading to Mito dysfunction; 2) an aerobic exercise program, even at an older age, can ameliorate the loss in skeletal muscle Mito content and may prevent aging muscle comorbidities; and 3) the improvement of Mito function is all about content.
BackgroundAPPRECIATE is a multinational, observational, retrospective, cross‐sectional study in patients treated for psoriasis with apremilast, an oral phosphodiesterase 4 inhibitor.ObjectivesTo describe the characteristics of patients with psoriasis treated with apremilast in the clinical setting, to evaluate real‐world outcomes of psoriasis treatment with apremilast and to better understand the perspectives of patients and physicians on treatment outcomes.MethodsIn six European countries, patients with chronic plaque psoriasis treated in clinical practice who could be contacted 6 (±1) months after apremilast initiation were enrolled. Patient characteristics, Dermatology Life Quality Index (DLQI) and Psoriasis Area and Severity Index (PASI) were obtained from medical records when available. Outcomes were evaluated using patient/physician questionnaires.ResultsIn 480 patients at treatment initiation, mean [median; 95% confidence interval (CI)] PASI and DLQI scores were 12.5 (10.7; 11.6–13.4) and 13.4 (13.0; 11.4–14.2), respectively. At 6 (±1) months, 72.3% of patients (n = 347) continued apremilast treatment [discontinuations: lack of efficacy (13.5%), safety (11.7%), other (2.5%)]. In patients continuing treatment, 48.6% achieved a ≥75% reduction in PASI score; mean (95% CI) DLQI score was 5.7 (4.5–6.9), and mean (SD) Patient Benefit Index score was 2.8 (1.2). Physicians perceived clinical improvement in 75.6% of patients. Physicians’ perspective on overall success of apremilast in meeting expectations correlated with patients’ perception of treatment benefit (r = 0.691). Most commonly reported adverse events (>5% of patients) were diarrhoea, nausea and headache.ConclusionsPatients in APPRECIATE reported high disease burden despite more moderate skin involvement than those who enrolled in clinical trials of apremilast. Findings from APPRECIATE demonstrate the real‐world value of apremilast for psoriasis treatment, as 7 of 10 patients continued therapy and showed notable improvement in disease severity and quality of life 6 (±1) months after apremilast initiation.
This study describes distinct patterns of molecular adaptations in human skeletal muscle under chronic exercise training. After 16 weeks of exercise, the pattern was dominated by fusion to increase mitochondrial content to the metabolic demands of exercise. In lifelong exercise, the pattern was dominated by mitophagy synchronized with increased fusion and decreased fission, indicating an increased mitochondrial turnover. In addition to these temporally distinct adaptive mechanisms, this study suggests for the first time a specific role of BCL2L13 in chronic exercise that requires constant maintenance of mitochondrial quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.