Developing
PROTACs to redirect the ubiquitination activity of E3
ligases and potently degrade a target protein within cells can be
a lengthy and unpredictable process, and it remains unclear whether
any combination of E3 and target might be productive for degradation.
We describe a probe-quality degrader for a ligase–target pair
deemed unsuitable: the von Hippel–Lindau (VHL) and BRD9, a
bromodomain-containing subunit of the SWI/SNF chromatin remodeling
complex BAF. VHL-based degraders could be optimized from suboptimal
compounds in two rounds by systematically varying conjugation patterns
and linkers and monitoring cellular degradation activities, kinetic
profiles, and ubiquitination, as well as ternary complex formation
thermodynamics. The emerged structure–activity relationships
guided the discovery of VZ185, a potent, fast, and selective degrader
of BRD9 and of its close homolog BRD7. Our findings qualify a new
chemical tool for BRD7/9 knockdown and provide a roadmap for PROTAC
development against seemingly incompatible target–ligase combinations.
E3 ubiquitin ligases are key enzymes within the ubiquitin proteasome system which catalyze the ubiquitination of proteins, targeting them for proteasomal degradation. E3 ligases are gaining importance as targets to small molecules, both for direct inhibition and to be hijacked to induce the degradation of non-native neo-substrates using bivalent compounds known as PROTACs (for ‘proteolysis-targeting chimeras’). We describe Homo-PROTACs as an approach to dimerize an E3 ligase to trigger its suicide-type chemical knockdown inside cells. We provide proof-of-concept of Homo-PROTACs using diverse molecules composed of two instances of a ligand for the von Hippel-Lindau (VHL) E3 ligase. The most active compound, CM11, dimerizes VHL with high avidity in vitro and induces potent, rapid and proteasome-dependent self-degradation of VHL in different cell lines, in a highly isoform-selective fashion and without triggering a hypoxic response. This approach offers a novel chemical probe for selective VHL knockdown, and demonstrates the potential for a new modality of chemical intervention on E3 ligases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.