We perform a numerical study of the systematic effects involved in the determination of the critical line at real baryonic chemical potential by analytic continuation from results obtained at imaginary chemical potentials. We present results obtained in theories free of the sign problem, such as two-color QCD with finite baryonic density and three-color QCD with finite isospin chemical potential, and comment on general features which could be relevant also to the continuation of the critical line in real QCD at finite baryonic density
Several strategies have been developed for the control of DNA translocation in nanopores and nanochannels. However, the possibility to reduce the molecule speed is still challenging for applications in the field of single molecule analysis, such as ultra-rapid sequencing. This paper demonstrates the possibility to alter the DNA translocation process through an elastomeric nanochannel device by dynamically changing its cross section. More in detail, nanochannel deformation is induced by a macroscopic mechanical compression of the polymeric device. This nanochannel squeezing allows slowing down the DNA molecule passage inside it. This simple and low cost method is based on the exploitation of the elastomeric nature of the device, can be coupled with different sensing techniques, is applicable in many research fields, such as DNA detection and manipulation, and is promising for further development in sequencing technology.
We present the development and the electrical characterization of a polymeric nanochannel device. Standard microfabrication coupled to Focused Ion Beam (FIB) nanofabrication is used to fabricate a silicon master, which can be then replicated in a polymeric material by soft lithography. Such an elastomeric nanochannel device is used to study DNA translocation events during electrophoresis experiments. Our results demonstrate that an easy and low cost fabrication technique allows creation of a low noise device for single molecule analysis.
Despite the widespread use of triangular nanochannels for the manipulation and analysis of DNA, studies on the confining effects induced by these nanofluidic structures on the molecules are still absent. Here, we perform coarse-grained Monte Carlo simulations to study the conformations of DNA in nanochannels. The influence of the shape of the nanochannel cross section is examined by comparing the elongation of molecules in triangular, rectangular, and square channels. Furthermore, the conformation of λ-DNA under weak confinement is studied both computationally and experimentally. Good agreement between optical measurements and simulations supports the reliability of the numerical model in predicting the molecule conformation, making it a reliable method to obtain information essential in many applications, such as DNA barcoding.
A Focused Ion Beam (FIB)-patterned silicon mould is used to fabricate elastomeric nanostructures, whose cross-section can be dynamically and reversibly tuned by applying a controlled mechanical stress. Direct-write, based on FIB milling, allows the fabrication of nanostructures with a variety of different geometries, aspect ratio, spacing and distribution offering a higher flexibility compared to other nanopatterning approaches. Moreover, a simple double replication process based on poly(dimethylsiloxane) permits a strong reduction of the fabrication costs that makes this approach well-suited for the production of low cost nanofluidic devices. DNA stretching and single molecule manipulation capabilities of these platforms have been successfully demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.