BackgroundThrough negative regulation of gene expression, microRNAs (miRNAs) can function as oncosuppressors in cancers, and can themselves show altered expression in various tumor types. Here, we have investigated medulloblastoma tumors (MBs), which arise from an early impairment of developmental processes in the cerebellum, where Notch signaling is involved in many of the cell-fate-determining stages. Notch regulates a subset of MB cells that have stem-cell-like properties and can promote tumor growth. On the basis of this evidence, we hypothesized that miRNAs targeting the Notch pathway can regulate these phenomena, and can be used in anti-cancer therapies.Methodology/Principal FindingsIn a screening of potential targets within Notch signaling, miR-34a was seen to be a regulator of the Notch pathway through its targeting of Notch ligand Delta-like 1 (Dll1). Down-regulation of Dll1 expression by miR-34a negatively regulates cell proliferation, and induces apoptosis and neural differentiation in MB cells. Using an inducible tetracycline on-off model of miR-34a expression, we show that in Daoy MB cells, Dll1 is the first target that is regulated in MB, as compared to the other targets analyzed here: Cyclin D1, cMyc and CDK4. MiR-34a expression negatively affects CD133+/CD15+ tumor-propagating cells, then we assay through reverse-phase proteomic arrays, Akt and Stat3 signaling hypo-phosphorylation. Adenoviruses carrying the precursor miR-34a induce neurogenesis of tumor spheres derived from a genetic animal model of MB (Patch1+/- p53-/-), thus providing further evidence that the miR-34a/Dll1 axis controls both autonomous and non autonomous signaling of Notch. In vivo, miR-34a overexpression carried by adenoviruses reduces tumor burden in cerebellum xenografts of athymic mice, thus demonstrating an anti-tumorigenic role of miR-34a in vivo.Conclusions/SignificanceDespite advances in our understanding of the pathogenesis of MB, one-third of patients with MB remain incurable. Here, we show that stable nucleic-acid-lipid particles carrying mature miR-34a can target Dll1 in vitro and show equal effects to those of adenovirus miR-34a cell infection. Thus, this technology forms the basis for their therapeutic use for the delivery of miR-34a in brain-tumor treatment, with no signs of toxicity described to date in non-human primate trials.
Dipyridamole is a widely prescribed drug in ischemic disorders, and it is here investigated for potential clinical use as a new treatment for breast cancer. Xenograft mice bearing triple-negative breast cancer 4T1-Luc or MDA-MB-231T cells were generated. In these in vivo models, dipyridamole effects were investigated for primary tumor growth, metastasis formation, cell cycle, apoptosis, signaling pathways, immune cell infiltration, and serum inflammatory cytokines levels. Dipyridamole significantly reduced primary tumor growth and metastasis formation by intraperitoneal administration. Treatment with 15 mg/kg/day dipyridamole reduced mean primary tumor size by 67.5 % (p = 0.0433), while treatment with 30 mg/kg/day dipyridamole resulted in an almost a total reduction in primary tumors (p = 0.0182). Experimental metastasis assays show dipyridamole reduces metastasis formation by 47.5 % in the MDA-MB-231T xenograft model (p = 0.0122), and by 50.26 % in the 4T1-Luc xenograft model (p = 0.0292). In vivo dipyridamole decreased activated β-catenin by 38.64 % (p < 0.0001), phospho-ERK1/2 by 25.05 % (p = 0.0129), phospho-p65 by 67.82 % (p < 0.0001) and doubled the expression of IkBα (p = 0.0019), thus revealing significant effects on Wnt, ERK1/2-MAPK and NF-kB pathways in both animal models. Moreover dipyridamole significantly decreased the infiltration of tumor-associated macrophages and myeloid-derived suppressor cells in primary tumors (p < 0.005), and the inflammatory cytokines levels in the sera of the treated mice. We suggest that when used at appropriate doses and with the correct mode of administration, dipyridamole is a promising agent for breast-cancer treatment, thus also implying its potential use in other cancers that show those highly activated pathways.
Several genes encoding for proteins involved in proliferation, invasion, and apoptosis are known to be direct miR-34a targets. Here, we used proteomics to screen for targets of miR-34a in neuroblastoma (NBL), a childhood cancer that originates from precursor cells of the sympathetic nervous system. We examined the effect of miR-34a overexpression using a tetracycline inducible system in two NBL cell lines (SHEP and SH-SY5Y) at early time points of expression (6, 12, and 24 h). Proteome analysis using post-metabolic labeling led to the identification of 2,082 proteins, and among these 186 were regulated (112 proteins down-regulated and 74 up-regulated). Prediction of miR-34a targets via bioinformatics showed that 32 transcripts held miR-34a seed sequences in their 3-UTR. By combining the proteomics data with Kaplan Meier geneexpression studies, we identified seven new gene products (ALG13, TIMM13, TGM2, ABCF2, CTCF, Ki67, and LYAR) that were correlated with worse clinical outcomes. These were further validated in vitro by 3-UTR seed sequence regulation. In addition, Michigan Molecular Interactions searches indicated that together these proteins affect signaling pathways that regulate cell cycle and proliferation, focal adhesions, and other cellular properties that overall enhance tumor progression (including signaling pathways such as TGF-, WNT, MAPK, and FAK). In conclusion, proteome analysis has here identified early targets of miR-34a with relevance to NBL tumorigenesis. Along with the results of previous studies, our data strongly suggest miR-34a as a useful tool for improving the chance of therapeutic success with NBL. Molecular
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.