Monitoring the human virome has been recently suggested as a promising and novel area of research for identifying new biomarkers which would help physicians in the management of transplant patients. Imbalance of the immune system in transplant recipients has a significant impact on replication of Torquetenovirus (TTV), the most representative and abundant virus of human virome. TTV kinetic was studied by real-time PCR in 280 liver or kidney transplant recipients who underwent different drug regimens to maintain immunosuppression. During one-year post-transplant follow-up, TTV viremia fluctuated irrespective of transplanted organ type but consistent with the immunosuppression regimen. TTV kinetic in patients who manifested cytomegalovirus (CMV) reactivation within the first four months post-transplant differed from that observed in patients who did not experience CMV complications. Importantly, plasma TTV load measured between day 0 and 10 post-transplant was significantly higher in CMV DNA positive than in CMV DNA negative patients. TTV viremia above 3.45 log DNA copies/ml within the first 10 days post-transplant correlates with higher propensity to CMV reactivation following transplantation. This study provides further evidence for using early post-transplant TTV viremia to predict CMV reactivation in liver or kidney transplant recipients.
Background: Torquetenovirus (TTV) viremia is emerging as a promising tool to assess functional immune competence, to predict posttransplant immune-related complications, and eventually to customize immunosuppression.Methods: In this study, 327 blood samples were tested using two real-time PCR (rtPCR) assays both targeted to the untranslated region of the TTV genome. The first assay was an in-house rtPCR developed by our group, the second one was the recently marketed TTV R-GENE assay.Results: In the validation study, the TTV R-GENE showed good performances in precision and reproducibility, and sensitivity as low as 12 TTV DNA copies/mL, like previously reported for the in-house rtPCR. The Bland-Altman analysis showed that the mean difference between the two methods was −0.3 log copies/mL. In the comparison study, 69% and 72% of samples were detected positive by rtPCR and TTV R-GENE, respectively (94% concordance, κ = 0.88). Performances did not differ between the two rtPCRs by type of TTV group examined. When a newly-developed in-house digital droplet PCR was applied for TTV quantification and used as an alternative method of comparison on 94 samples, the results strongly correlated with those obtained by the two rtPCR methods (99% concordance). Conclusion:In summary, all the molecular methods assayed are highly sensitive and accurate in quantitation of TTV DNA in blood samples.digital droplet PCR, methods comparison, real-time PCR, torquetenovirus | INTRODUCTIONSoon after its discovery, 1 it became clear that torquetenovirus (TTV) was just one of a vast group of related, previously unrecognized viral agents, all of which were characterized by small, circular singlestranded DNA genomes with negative polarity. 2 Presently, all these viruses are classified within the family Anelloviridae. 3 TTV is currently attracting considerable interest due to a number of specific features. Among these, the most intriguing is probably the extremely high prevalence of chronic plasma viremia in more than 80% of the general population, regardless of disease status, age, sex, socioeconomic conditions, geographic location, risk factors, and other variables. 4,5 Individual viremia levels have been shown to vary between 10 1 to 10 9 genome copies per milliliter (mL) of blood, with
BackgroundTorquetenovirus (TTV) belongs to Anelloviridae family, infects nearly all people indefinitely without causing overt disease establishing a fine and successful interaction with the host. Increasing evidence have shown some human viruses exploit extracellular vesicles thereby helping viral persistence in the host. Here, the presence of TTV in extracellular vesicles circulating in human plasma was investigated.MethodsTTV DNA was quantified in plasma-derived exosomes from 122 samples collected from 97 diseased patients and 25 healthy donors. Exosomes enriched vesicles (EEVs) were extracted from plasma and characterized by Nanoparticle tracking analysis, by western blot for presence of tetraspanin CD63, CD81 and annexin II protein and, finally, by electron microscopy (EM). Presence and quantitation of TTV DNA were assessed with an universal single step real-time TaqMan PCR assay.ResultsPreliminary investigation showed that the human plasma extracted extracellular vesicles exhibited a main size of 70 nm, had concentration of 2.5 × 109/ml, and scored positive for tetraspanin CD63, CD81 and annexin II, typical characteristic of the exosomes vesicles. EEVs extracted from pooled plasma with TTV DNA viremia of 9.7 × 104 copies/ml showed to contain 6.3 × 102 TTV copies/ml, corresponding to 0.65% of total viral load. Important, TTV yield changed significantly following freezing/thawing, detergents and DNAse treatment of plasma before EEVs extraction. EEVs purified by sucrose-density gradient centrifugation and analysis of gradient fraction positive for exosomes marker CD63 harbored 102 TTV copies/ml. Moreover, EM evidenced the presence of TTV-like particles in EEVs. Successive investigation of plasma EEVs from 122 subjects (37 HIV-positive, 20 HCV infected, 20 HBV infected, 20 kidney transplant recipients, and 25 healthy) reported TTV DNA detection in 42 (34%) of the viremic samples (37 were from diseased patients and 5 from healthy people) at a mean level of 4.8 × 103 copies/ml. The examination of EEVs selected samples reported the presence of TTV genogroup 1, 3, 4 and 5, with genogroup 3 highly observed.ConclusionsCollectively, although these observations should be confirmed by further studies, circulation of TTV particles in EEVs opens new avenues and mechanistic insights on the molecular strategies adopted by anelloviruses to persist in the host.
In search of new antimicrobials with anti-biofilm potential, in the present study activity of the frog-skin derived antimicrobial peptide temporin 1Tb (TB) against Staphylococcus epidermidis biofilms was investigated. A striking ability of TB to kill both forming and mature S. epidermidis biofilms was observed, especially when the peptide was combined with cysteine or EDTA, respectively. Kinetics studies demonstrated that the combination TB/EDTA was active against mature biofilms already after 2-4-h exposure. A double 4-h exposure of biofilms to TB/EDTA further increased the therapeutic potential of the same combination. Of note, TB/EDTA was able to eradicate S. epidermidis biofilms formed in vitro on silicone catheters. At eradicating concentrations, TB/EDTA did not cause hemolysis of human erythrocytes. The results shed light on the anti-biofilm properties of TB and suggest a possible application of the peptide in the lock therapy of catheters infected with S. epidermidis.
Candida auris is a multidrug-resistant, difficult-to-eradicate pathogen that can colonize patients and health-care environments and cause severe infections and nosocomial outbreaks, especially in intensive care units. We observed an extremely low-birth-weight (800 g), preterm neonate born from vaginal delivery from a C. auris colonized mother, who was colonized by C. auris within a few hours after birth. We could not discriminate whether the colonization route was the birth canal or the intensive care unit environment. The infant died on her third day of life because of complications related to prematurity, without signs or symptoms of infections. In contexts with high rates of C.auris colonization, antifungal prophylaxis in low-birth-weight, preterm neonates with micafungin should be considered over fluconazole due to the C. auris resistance profile, at least until its presence is excluded.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.