Gray mold is one of the most important diseases of grapevine in temperate climates. This plant pathogen affects plant growth and reduces wine quality. The use of yeasts as biocontrol agents to apply in the vineyard have been investigated in recent years as an alternative to agrochemicals. In this work, fermenting musts obtained from overripe grape berries, therefore more susceptible to infection by fungal pathogens such as Botrytis cinerea, were considered for the selection of yeasts carrying antifungal activity. Thirty-six isolates were identified as Starmerella bacillaris, a species recently proven to be of enological interest. Among them 14 different strains were studied and antifungal activity against B. cinerea was demonstrated, for the first time, to be present in S. bacillaris species. The production of volatile organic compounds (VOCs), tested in vitro, was found to be the main responsible of S. bacillaris antifungal effects. All the strains were able to reduce B. cinerea decay on wounded grape berries artificially inoculated with gray mold. The colonization level of wound was very high reaching, after 5 days, a concentration of 106 cells per ml of grape juice obtained after berry crushing. At this cell concentration S. bacillaris strains were used to ferment synthetic and natural musts. The sequential yeast inoculation, performed by adding S. cerevisiae 48 h after S. bacillaris, was needed to complete sugar consumption and determined a significant increase in glicerol content and a reduction of ethanol and acetic acid concentrations. The high wound colonization ability, found in this work, together with the propensity to colonize grape berry and the interesting enological traits possessed by the selected S. bacillaris strains allow the use of this yeast as biocontrol agent on vine and grape berries with possible positive effects on must fermentation, although the presence of S. cerevisiae is needed to complete the fermentation process. This work introduces new possibilities in wine yeast selection programs in order to identify innovative wine yeasts that are simultaneously antifungal agents in vineyards and alternative wine starters for grape must fermentation and open new perspective to a more integrated strategy for increasing wine quality.
Environmental Saccharomyces cerevisiae strains are crucially important, as they represent the large pool from which domesticated industrial yeasts have been selected, and vineyard strains can be considered the genetic reservoir from which industrial wine strains with strong fermentative behaviour are selected. Four vineyard strains with different fermentation performances were chosen from a large collection of strains isolated from Italian vineyards. Their genomes were sequenced to identify how genetic variations influence gene expression during fermentation and to clarify the evolutionary relationship between vineyard isolates and industrial wine strains. RNA sequencing was performed on the four vineyard strains, as well as on the industrial wine yeast strain EC1118 and on the laboratory strain S288c, at two stages of fermentation. We showed that there was a large gene cluster with variable promoter regions modifying gene expression in the strains. Our results indicate that it is the evolvability of the yeast promoter regions, rather than structural variations or strain-specific genes, that is the main cause of the differences in gene expression. This promoter variability, determined by variable tandem repeats and a high number of single-nucleotide polymorphisms together with 49 differentially expressed transcription factors, explained the strong phenotypic differences in the strains.
In recent years the interest for natural fermentations has been re-evaluated in terms of increasing the wine terroir and managing more sustainable winemaking practices. Therefore, the level of yeast genetic variability and the abundance of Saccharomyces cerevisiae native populations in vineyard are becoming more and more crucial at both ecological and technological level. Among the factors that can influence the strain diversity, the commercial starter release that accidentally occur in the environment around the winery, has to be considered. In this study we led a wide scale investigation of S. cerevisiae genetic diversity and population structure in the vineyards of three neighboring winemaking regions of Protected Appellation of Origin, in North-East of Italy. Combining mtDNA RFLP and microsatellite markers analyses we evaluated 634 grape samples collected over 3 years. We could detect major differences in the presence of S. cerevisiae yeasts, according to the winemaking region. The population structures revealed specificities of yeast microbiota at vineyard scale, with a relative Appellation of Origin area homogeneity, and transition zones suggesting a geographic differentiation. Surprisingly, we found a widespread industrial yeast dissemination that was very high in the areas where the native yeast abundance was low. Although geographical distance is a key element involved in strain distribution, the high presence of industrial strains in vineyard reduced the differences between populations. This finding indicates that industrial yeast diffusion it is a real emergency and their presence strongly interferes with the natural yeast microbiota.
We used RNA-sequencing (RNA-seq) to analyze the expression profile of four vineyard strains of Saccharomyces cerevisiae having different fermentation performances. The expression profiles obtained in two steps of the fermentation process were compared with those obtained for the industrial wine strain EC1118 and for the laboratory strain S288c. The two strains with low fermentation efficiency, namely, S288c and the vineyard strain R103, exhibited markedly different expression profiles when compared to the other four strains. We also found that the vineyard strains P283 and P301 are characterized by a high expression of the transcription factor Met32p in the first step of the fermentation. Met32p, in coordination with the Hap4p transcription factor, determined the over-expression of the genes involved in the respiration processes, in the response to oxidative stress and in the sulfur amino acids biosynthesis. These combined actions are likely to increase the level of antioxidants whose protective effect could contribute to improve the fermentation process. Gene expression and phenotypic data revealed that the vineyard strain P301 has low nitrogen utilization in comparison to the other wine strains, combined with high fermentation efficiency. Analysis of the genes involved in fermentation stress response revealed a lower expression in strains characterized by low fermentation efficiency, particularly in the first fermentation phase. These findings evidenced the high variability of transcriptional profiles among different wine yeast strains and clarify their connection with complex phenotypic traits, such as the fermentation efficiency and the nitrogen sources utilization.
From a technological point of view, yeast resistance to sulfite is of great interest and represents an important technological character for winemaking. Several mechanisms are involved, and strain-dependent strategies to obtain SO2 resistance can deeply influence wine quality, although this choice is less relevant in determining the technological performance of the strain during fermentation. In this study, to better understand the strain-specific mechanisms of resistance, 11 Saccharomyces cerevisiae strains, whose genomes have been previously sequenced, were selected. Their attitude towards sulfites, in terms of resistance and production, was evaluated, and RNA-sequencing of four selected strains was performed during fermentation process in synthetic grape must in the presence of SO2. Results demonstrated that at molecular level, the physical effect of SO2 triggered multiple stress responses in the cell and high tolerance to general enological stressing condition increased SO2 resistance. Adaptation mechanism due to high basal gene expression level rather than specific gene induction in the presence of sulfite seemed to be responsible in modulating strain resistance. This mechanism involved higher basal gene expression level of specific cell wall proteins, enzymes for lipid biosynthesis, and enzymes directly involved in SO2 assimilation pathway and efflux.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.