Background and PurposeIn 30–40% of hypertrophic cardiomyopathy (HCM) patients, symptomatic left ventricular (LV) outflow gradients develop only during exercise due to catecholamine‐induced LV hypercontractility (inducible obstruction). Negative inotropic pharmacological options are limited to β‐blockers or disopyramide, with low efficacy and tolerability. We assessed the potential of late sodium current (INaL)‐inhibitors to treat inducible obstruction in HCM.Experimental ApproachThe electrophysiological and mechanical responses to β‐adrenoceptor stimulation were studied in human myocardium from HCM and control patients. Effects of INaL‐inhibitors (ranolazine and GS‐967) in HCM samples were investigated under conditions simulating rest and exercise.Key ResultsIn cardiomyocytes and trabeculae from 18 surgical septal samples of patients with obstruction, the selective INaL‐inhibitor GS‐967 (0.5 μM) hastened twitch kinetics, decreased diastolic [Ca2+] and shortened action potentials, matching the effects of ranolazine (10μM). Mechanical responses to isoprenaline (inotropic and lusitropic) were comparable in HCM and control myocardium. However, isoprenaline prolonged action potentials in HCM myocardium, while it shortened them in controls. Unlike disopyramide, neither GS‐967 nor ranolazine reduced force at rest. However, in the presence of isoprenaline, they reduced Ca2+‐transient amplitude and twitch tension, while the acceleration of relaxation was maintained. INaL‐inhibitors were more effective than disopyramide in reducing contractility during exercise. Finally, INaL‐inhibitors abolished arrhythmias induced by isoprenaline.Conclusions and ImplicationsRanolazine and GS‐967 reduced septal myocardium tension during simulated exercise in vitro and therefore have the potential to ameliorate symptoms caused by inducible obstruction in HCM patients, with some advantages over disopyramide and β‐blockers.
Cardiomyocytes from human induced pluripotent stem cells (hiPSC-CMs) are the most promising human source with preserved genetic background of healthy individuals or patients. This study aimed to establish a systematic procedure for exploring development of hiPSC-CM functional output to predict genetic cardiomyopathy outcomes and identify molecular targets for therapy. Biomimetic substrates with microtopography and physiological stiffness can overcome the immaturity of hiPSC-CM function. We have developed a custom-made apparatus for simultaneous optical measurements of hiPSC-CM action potential and calcium transients to correlate these parameters at specific time points (day 60, 75 and 90 post differentiation) and under inotropic interventions. In later-stages, single hiPSC-CMs revealed prolonged action potential duration, increased calcium transient amplitude and shorter duration that closely resembled those of human adult cardiomyocytes from fresh ventricular tissue of patients. Thus, the major contribution of sarcoplasmic reticulum and positive inotropic response to β-adrenergic stimulation are time-dependent events underlying excitation contraction coupling (ECC) maturation of hiPSC-CM; biomimetic substrates can promote calcium-handling regulation towards adult-like kinetics. Simultaneous optical recordings of long-term cultured hiPSC-CMs on biomimetic substrates favor high-throughput electrophysiological analysis aimed at testing (mechanistic hypothesis on) disease progression and pharmacological interventions in patient-derived hiPSC-CMs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.