Background Breast cancers that harbor mismatch-repair (MMR) deficiency and/or microsatellite instability (MSI) might be sensitive to immune checkpoint blockade, but there are currently no specific guidelines for assessing MMR status in breast cancer. Here, we sought to define the clinical value of MMR immunohistochemistry (IHC) and MSI analysis in breast cancers. Methods We subjected 444 breast cancers to MMR IHC and MSI analysis. Cases were classified as MMR-proficient (pMMR), MMR-deficient (dMMR), and MMR-heterogeneous (hMMR) based on the loss of immunoreactivity; MSI was defined by instability in the five indicators recommended by the National Cancer Institute for endometrial and colorectal cancers. Correlation of MMR status with patients’ survival was assessed using the Kaplan-Meier estimator. Statistical tests were two-sided. Results Loss of MMR proteins was homogeneous (dMMR) in 75 patients (17%) and heterogeneous (hMMR) in 55 (12%). Among luminal breast cancers, there were similar frequencies of dMMR and hMMR tumors. Overall, the rate of discrepancy between IHC and MSI analysis was high (91%). Women with Luminal B-like dMMR carcinomas (n = 44) showed shorter overall survival (median = 77 months, range = 0–115 months) than those with pMMR (n = 205) or hMMR (n = 35) tumors (median = 84 months, range = 0–127 months) (P = .008). On the contrary, patients with estrogen receptor-negative breast cancers treated with chemotherapy lived longer in cases of dMMR (n = 9) than pMMR (n = 33) or hMMR (n = 7) tumors, with 87 months of median survival (range = 73–123 months) for the former compared with 79 months (range = 8–113 months) for the latter two categories (P < .001). Conclusions Immunohistochemistry and MSI are not interchangeable tests in breast carcinomas. MMR protein loss is a more common event than MSI and shows intra-tumor heterogeneity. MMR IHC allows the identification of clinically relevant subclasses of breast cancer patients, provided that multiple areas of the tumor are analyzed.
Background:The need to integrate the classification of cancer with information on the genetic pattern has emerged in recent years for several tumors. Patients and methods:The genomic background of a large series of 208 papillary thyroid cancers (PTC) followed at a single Center was analyzed by a custom MassARRAY genotyping platform (PTC-MA), which allows the simultaneous detection of 19 common genetic alterations including point mutations and fusions.Results: 71% of the PTCs were found to have pathognomonic genetic findings, with BRAF V600E and TERT promoter mutations being the most frequent monoallelic alterations (42 and 23.5%, respectively), followed by RET/PTC fusions. In 19.2% of cases, two or more point mutations were found, and the co-occurrence of a fusion with ≥1 point mutation/s was also observed. Coexisting BRAF V600E and TERT promoter mutations were detected in a subgroup of aggressive PTCs (12%). A correlation between several aggressive features and mutation density was found, regardless of the type of association (i.e. only point mutations, or point mutations and fusions). Importantly, Kaplan Meier curves demonstrated that mutation density significantly correlated with a higher risk of persistent disease. In most cases, the evaluation of the allelic frequencies normalized for the cancer cell content indicated the presence of the monoallelic mutation in virtually all tumor cells.A minority of cases was found to harbor low allelic frequencies, consistent with the presence of the mutations in a small subset of cancer cells, thus indicating tumor heterogeneity. Consistently, the presence of coexisting genetic alterations with different allelic frequencies in some tumors suggests that PTC can be formed by clones/subclones with different mutational profiles. Conclusions:A large mono-institutional series of PTCs was fully genotyped by means of a cost-and time-effective customized panel, revealing a strong impact of mutation density and genetic heterogeneity on the clinical features and on disease outcomes, indicating that an accurate risk stratification of thyroid cancer cannot rely on the analysis of a single genetic event. Finally, the heterogeneity found in some tumors warrants attention, since the occurrence of this phenomenon is likely to affect response to targeted therapies.
Polo-like kinases (PLKs) control several aspects of eukaryotic cell division and DNA damage response. Remarkably, PLKs are overexpressed in several types of cancer, being therefore a marker of bad prognosis. As such, specific PLK kinase activity inhibitors are already used in clinical trials and the regulation of PLK activation is a relevant topic of cancer research. Phosphorylation of threonine residues in the T-loop of the kinase domain is pivotal for PLKs activation. Here, we show that T238A substitution in the T-loop reduces the kinase activity of Cdc5, the only PLK in Saccharomyces cerevisiae, with minor effect on cell growth in unperturbed conditions. However, the cdc5-T238A cells have increased rate of chromosome loss and gross chromosomal rearrangements, indicating altered genome stability. Moreover, the T238A mutation affects timely localization of Cdc5 to the spindle pole bodies and blocks cell cycle restart after one irreparable double-strand break. In cells responding to alkylating agent metylmethane sulfonate (MMS), the cdc5-T238A mutation reduces the phosphorylation of Mus81-Mms4 resolvase and exacerbates the MMS sensitivity of sgs1Δ cells that accumulate Holliday junctions. Of importance, the previously described checkpoint adaptation defective allele, cdc5-ad does not show reduced kinase activity, defective Mms4 phosphorylation and genetic interaction with sgs1Δ. Our data define the importance of regulating Cdc5 activity through T-loop phosphorylation to preserve genome integrity and respond to DNA damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.