This short review examines the most recent functional studies of the topographic organization of the human corpus callosum, the main interhemispheric commissure. After a brief description of its anatomy, development, microstructure, and function, it examines and discusses the latest findings obtained using diffusion tensor imaging (DTI) and tractography (DTT) and functional magnetic resonance imaging (fMRI), three recently developed imaging techniques that have significantly expanded and refined our knowledge of the commissure. While DTI and DTT have been providing insights into its microstructure, integrity and level of myelination, fMRI has been the key technique in documenting the activation of white matter fibers, particularly in the corpus callosum. By combining DTT and fMRI it has been possible to describe the trajectory of the callosal fibers interconnecting the primary olfactory, gustatory, motor, somatic sensory, auditory and visual cortices at sites where the activation elicited by peripheral stimulation was detected by fMRI. These studies have demonstrated the presence of callosal fiber tracts that cross the commissure at the level of the genu, body, and splenium, at sites showing fMRI activation. Altogether such findings lend further support to the notion that the corpus callosum displays a functional topographic organization that can be explored with fMRI.
Mental rotation is an abstract operation whereby a person imagines rotating an object or a body part to place it in a different position. The ability to perform mental rotation was attributed to right hemisphere for objects, to the left for one’s own body images. Mental rotation seems to be basic for imitation in anatomical mode. Previous studies showed that control subjects, callosotomized and psychotic patients chose the mirror-mode when imitating without instructions; when asked to use the same or opposite limb as the model, controls chose the anatomical mode, callosotomized patients mainly used mirror mode, psychotic patients were in between. The preference of callosotomized subjects is likely due to defective mental rotation, because of the lack of the corpus callosum (CC), thus suggesting an asymmetry in the hemispheric competence for mental rotation. Present research investigated the mental rotation ability in control subjects, callosotomized and psychotic patients. All subjects were shown pictures of a model, in first or third person perspective, with a cup in her right or left hand. They had to indicate which model’s hand held the cup, by answering with a verbal or motor modality in separate experimental sessions. In both sessions, control subjects produced 99% of correct responses, callosotomy patients 62%, and psychotic patients 91%. The difference was statistically significant, suggesting a role of the CC in the integration of the two hemispheres’ asymmetric functions in mental rotation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.