Both real action control and execution and motor imagery abilities require knowledge of the spatial location of body parts, in other words efference copy information and feedbacks from the sensory system (Frith et al., 2000, Philos. Trans. R. Soc. Lond. B. Biol. Sci., 355, 1771). Spinal cord injuries induce severe motor disability, due to a damage of the descending motor pathways (Cramer et al., 2007, Exp. Brain. Res., 177, 233). Patients' motor imagery competences are variably reported as either normal or defective (Decety & Boisson, 1990, Eur. Arch. Psychiatry Clin. Neurosci., 240, 39; Lacourse et al., 1999, Behav. Brain Sci., 104, 73). We explored biomechanical constraint effects in Spinal Cord Injury (SCI) patients, as they are considered the most reliable indexes of motor imagery abilities (Parsons, 1987b, Cogn. Psychol., 19, 178). Sixteen spinal cord injuries patients and 16 neurologically unimpaired subjects have been administered with (1) the Hand Laterality Task (HLT), in which subjects were asked to judge the laterality of a rotated hand; and (2) the Mirror Letter Discrimination Task (MLD), in which subjects were asked to judge if a rotated character was in its correct upright position or mirror-reversed form. Our patients did not present the effect of stimulus orientation, neither did they show any effect related to biomechanical constraints. Based on these data, the hypothesis is that SCI patients' performance may be ascribed to the use of a different strategy to solve the tasks, based on memory rather than on mental rotation.
Amyotrophic Lateral Sclerosis (ALS) is a motor neuron disease characterized by the progressive atrophy of both the first and the second motor neurons. Although the cognitive profile of ALS patients has already been defined by the occurrence of language dysfunctions and frontal deficit symptoms, it is less clear whether the degeneration of upper and lower motor neurons affects motor imagery abilities. Here, we directly investigated motor imagery in ALS patients by means of an established task that allows to examine the presence of the effects of the biomechanical constraints. Twenty-three ALS patients and 23 neurologically unimpaired participants have been administered with the (1) hand laterality task (HLT) in which participants were asked to judge the laterality of a rotated hand and the (2) mirror letter discrimination task (MLD) in which participants were asked to judge whether a rotated alphanumeric character was in its canonical or mirror-reversed form (i.e. control task). Results show that patients present the same pattern of performance as unimpaired participants at the MLD, while at the HLT, they present only partially with the effects of biomechanical constraints. Taken together, our findings provide evidences that motor imagery abilities, related to the mental simulation of an action, are affected by this progressive disease.
The present study describes different cognitive profiles in children with ADHD with or without comorbid disorders using neuropsychological EF measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.