Sterile alpha motif and HD-domain containing protein 1 (SAMHD1) is a triphosphohydrolase converting deoxynucleoside triphosphates (dNTPs) to deoxynucleosides. The enzyme was recently identified as a component of the human innate immune system that restricts HIV-1 infection by removing dNTPs required for viral DNA synthesis. SAMHD1 has deep evolutionary roots and is ubiquitous in human organs. Here we identify a general function of SAMHD1 in the regulation of dNTP pools in cultured human cells. The protein was nuclear and variably expressed during the cell cycle, maximally during quiescence and minimally during S-phase. Treatment of lung or skin fibroblasts with specific siRNAs resulted in the disappearence of SAMHD1 accompanied by loss of the cell-cycle regulation of dNTP pool sizes and dNTP imbalance. Cells accumulated in G1 phase with oversized pools and stopped growing. Following removal of the siRNA, the pools were normalized and cell growth restarted, but only after SAMHD1 had reappeared. In quiescent cultures SAMHD1 down-regulation leads to a marked expansion of dNTP pools. In all cases the largest effect was on dGTP, the preferred substrate of SAMHD1. Ribonucleotide reductase, responsible for the de novo synthesis of dNTPs, is a cytosolic enzyme maximally induced in S-phase cells. Thus, in mammalian cells the cell cycle regulation of the two main enzymes controlling dNTP pool sizes is adjusted to the requirements of DNA replication. Synthesis by the reductase peaks during S-phase, and catabolism by SAMHD1 is maximal during G1 phase when large dNTP pools would prevent cells from preparing for a new round of DNA replication. dNTP regulation | cell cycle arrest | dGTP pool
5' nucleotidases are ubiquitous enzymes that dephosphorylate nucleoside monophosphates and participate in the regulation of nucleotide pools. The mitochondrial 5'-(3') deoxyribonucleotidase (dNT-2) specifically dephosphorylates dUMP and dTMP, thereby protecting mitochondrial DNA replication from excess dTTP. We have solved the structure of dNT-2, the first of a mammalian 5' nucleotidase. The structure reveals a relationship to the HAD family, members of which use an aspartyl nucleophile as their common catalytic strategy, with a phosphoserine phosphatase as the most similar neighbor. A structure-based sequence alignment of dNT-2 with other 5' nucleotidases also suggests a common origin for these enzymes. Here we study the structures of dNT-2 in complex with bound phosphate and beryllium trifluoride plus thymidine as model for a phosphoenzyme-product complex. Based on these structures, determinants for substrate specificity recognition and the catalytic action of dNT-2 are outlined.
Ribonucleotide reductase provides deoxynucleotides for nuclear and mitochondrial (mt) DNA replication and repair. The mammalian enzyme consists of a catalytic (R1) and a radical-generating (R2 or p53R2) subunit. During S-phase, a R1/R2 complex is the major provider of deoxynucleotides. p53R2 is induced by p53 after DNA damage and was proposed to supply deoxynucleotides for DNA repair after translocating from the cytosol to the cell nucleus. Similarly R1 and R2 were claimed to move to the nucleus during S-phase to provide deoxynucleotides for DNA replication. These models suggest translocation of ribonucleotide reductase subunits as a regulatory mechanism. In quiescent cells that are devoid of R2, R1/p53R2 synthesizes deoxynucleotides also in the absence of DNA damage. Mutations in human p53R2 cause severe mitochondrial DNA depletion demonstrating a vital function for p53R2 different from DNA repair and cast doubt on a nuclear localization of the protein. Here we use three independent methods to localize R1, R2, and p53R2 in fibroblasts during cell proliferation and after DNA damage: Western blotting after separation of cytosol and nuclei; immunofluorescence in intact cells; and transfection with proteins carrying fluorescent tags. We thoroughly validate each method, especially the specificity of antibodies. We find in all cases that ribonucleotide reductase resides in the cytosol suggesting that the deoxynucleotides produced by the enzyme diffuse into the nucleus or are transported into mitochondria and supporting a primary function of p53R2 for mitochondrial DNA replication.DNA precursors ͉ immunofluorescence ͉ mitochondrial DNA ͉ p53R2 ͉ subcellular localization D NA replication and repair require a balanced supply of the four common deoxynucleoside triphosphates (dNTPs). In mammalian cells DNA synthesis occurs in two separate compartments: nucleus and mitochondria. The complete nuclear DNA is replicated only in cycling cells during S-phase, whereas cycling and quiescent cells replicate mitochondrial DNA and repair damaged DNA during their whole existence. Thus cycling cells require during a limited period a large supply of dNTPs in the nucleus. Outside S-phase cells consume much smaller amounts of dNTPs, mainly in the cytosol for mitochondrial (mt) DNA replication. In all cells the major supply of dNTPs comes from the de novo reduction of ribonucleoside diphosphates to deoxyribonucleoside diphosphates by the enzyme ribonucleotide reductase (RNR) (1).In cycling cells, the dominant form of mammalian RNR consists of two proteins called R1 and R2. The activity of the R1/R2 enzyme is exquisitely regulated by allosteric mechanisms involving nucleoside triphosphates and also by S-phase-specific transcription and proteasome-mediated degradation of R2 in late mitosis (2). Thus postmitotic cells are completely devoid of protein R2. How do these cells synthesize dNTPs for mitochondrial DNA replication and DNA repair? Until recently the answer to this question was by salvage of deoxynucleosides but the picture changed su...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.