Previous detections of individual astrophysical sources of neutrinos are limited to the Sun and the supernova 1987A, whereas the origins of the diffuse flux of high-energy cosmic neutrinos remain unidentified. On 22 September 2017, we detected a high-energy neutrino, IceCube-170922A, with an energy of ~290 tera-electron volts. Its arrival direction was consistent with the location of a known γ-ray blazar, TXS 0506+056, observed to be in a flaring state. An extensive multiwavelength campaign followed, ranging from radio frequencies to γ-rays. These observations characterize the variability and energetics of the blazar and include the detection of TXS 0506+056 in very-high-energy γ-rays. This observation of a neutrino in spatial coincidence with a γ-ray-emitting blazar during an active phase suggests that blazars may be a source of high-energy neutrinos.
We revisit the blazar sequence exploiting the complete, flux limited sample of blazars with known redshift detected by the Fermi satellite after 4 years of operations (the 3LAC sample). We divide the sources into γ-ray luminosity bins, collect all the archival data for all blazars, and construct their spectral energy distribution (SED). We describe the average SED of blazars in the same luminosity bin through a simple phenomenological function consisting of two broken power laws connecting with a power law describing the radio emission. We do that separately for BL Lacs and for flat spectrum radio quasars (FSRQs) and also for all blazars together. The main results are: i) FSRQs display approximately the same SED as the luminosity increases, but the relative importance of the high energy peak increases; ii) as a consequence, X-ray spectra of FSRQs become harder for larger luminosities; iii) BL Lacs form indeed a sequence: they become redder (i.e. smaller peak frequencies) with increasing luminosities, with a softer γ-ray slope and a larger dominance of the high energy peak; iv) for all blazars (BL Lacs+FSRQs) these properties becomes more prominent, as the highest luminosity bin is populated mostly by FSRQs and the lowest luminosity bin mostly by BL Lacs. This agrees with the original blazar sequence, although BL Lacs never have an average γ-ray slope as hard as found in the original sequence. v) At high luminosities, a large fraction of FSRQs shows signs of thermal emission from the accretion disc, contributing in the optical-UV.
A neutrino with energy ∼290 TeV, IceCube-170922A, was detected in coincidence with the BL Lac object TXS0506+056 during enhanced gamma-ray activity, with chance coincidence being rejected at ∼3σ level. We monitored the object in the very-high-energy (VHE) band with the Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) telescopes for ∼41 hr from 1.3 to 40.4 days after the neutrino detection. Day-timescale variability is clearly resolved. We interpret the quasi-simultaneous neutrino and broadband electromagnetic observations with a novel one-zone lepto-hadronic model, based on interactions of electrons and protons coaccelerated in the jet with external photons originating from a slow-moving plasma sheath surrounding the faster jet spine. We can reproduce the multiwavelength spectra of TXS 0506+056 with neutrino rate and energy compatible with IceCube-170922A, and with plausible values for the jet power of 10 4 10 erg s 45 46 1 -´-. The steep spectrum observed by MAGIC is concordant with internal γγ absorption above ∼100 GeV entailed by photohadronic production of a ∼290 TeV neutrino, corroborating a genuine connection between the multi-messenger signals. In contrast to previous predictions of predominantly hadronic emission from neutrino sources, the gamma-rays can be mostly ascribed to inverse Compton upscattering of external photons by accelerated electrons. The X-ray and VHE bands provide crucial constraints on the emission from both accelerated electrons and protons. We infer that the maximum energy of protons in the jet comoving frame can be in the range ∼10 14 -10 18 eV.
We report results of a spectroscopic campaign carried out at the 10 m Gran Telescopio Canarias for a sample of 22 BL Lac objects detected (or candidates) at TeV energies, aimed to determine or constrain their redshift. This is of fundamental importance for the interpretation of their emission models, for population studies and also mandatory to study the interaction of high energy photons with the extragalactic background light using TeV sources. High signal-to-noise optical spectra in the range 4250 -10000Å were obtained to search for faint emission and/or absorption lines from both the host galaxy or the nucleus. We determine a new redshift for PKS 1424+240 (z = 0.604) and a tentative one for 1ES 0033+595 (z = 0.467). We are able to set new spectroscopic redshift lower limits for other three sources on the basis of Mg II and Ca II intervening absorption features: BZB J1243+3627 (z > 0.483), BZB J1540+8155 (z > 0.672), and BZB 0J2323+4210 (z > 0.267). We confirm previous redshift estimates for four blazars: S3 0218+357 (z = 0.944), 1ES 1215+303 (z = 0.129), W Comae (z = 0.102), and MS 1221.8+2452 (z = 0.218). For the remaining targets, in seven cases (S2 0109+22, 3C 66A, VER J0521+211, S4 0954+65, BZB J1120+4214, S3 1227+25, BZB J2323+4210), we do not validate the proposed redshift. Finally for all sources of still unknown redshift, we set a lower limit based on the minimum equivalent width of absorption features expected from the host galaxy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.