Endurance exercise training increases cardiac energy metabolism through poorly understood mechanisms. Nitric oxide (NO) produced by endothelial NO synthase (eNOS) in cardiomyocytes contributes to cardiac adaptation. Here we demonstrate that the NO donor diethylenetriamine-NO (DETA-NO) activated mitochondrial biogenesis and function, as assessed by upregulated peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), nuclear respiratory factor 1, and mitochondrial transcription factor A (Tfam) expression, and by increased mitochondrial DNA content and citrate synthase activity in primary mouse cardiomyocytes. DETA-NO also induced mitochondrial biogenesis and function and enhanced both basal and insulin-stimulated glucose uptake in HL-1 cardiomyocytes. The DETA-NO-mediated effects were suppressed by either PGC-1α or Tfam small-interference RNA in HL-1 cardiomyocytes. Wild-type and eNOS(-/-) mice were subjected to 6 wk graduated swim training. We found that eNOS expression, mitochondrial biogenesis, mitochondrial volume density and number, and both basal and insulin-stimulated glucose uptake were increased in left ventricles of swim-trained wild-type mice. On the contrary, the genetic deletion of eNOS prevented all these adaptive phenomena. Our findings demonstrate that exercise training promotes eNOS-dependent mitochondrial biogenesis in heart, which behaves as an essential step in cardiac glucose transport.
Musculoskeletal pain conditions are age-related, leading contributors to chronic pain and pain-related disability, which are expected to rise with the rapid global population aging. Current medical treatments provide only partial relief. Furthermore, non-steroidal anti-inflammatory drugs (NSAIDs) and opioids are effective in young and otherwise healthy individuals but are often contraindicated in elderly and frail patients. As a result of its favorable safety and tolerability record, paracetamol has long been the most common drug for treating pain. Strikingly, recent reports questioned its therapeutic value and safety. This review aims to present guideline recommendations. Paracetamol has been assessed in different conditions and demonstrated therapeutic efficacy on both acute and chronic pain. It is active as a single agent and is additive or synergistic with NSAIDs and opioids, improving their efficacy and safety. However, a lack of significant efficacy and hepatic toxicity have also been reported. Fast dissolving formulations of paracetamol provide superior and more extended pain relief that is similar to intravenous paracetamol. A dose reduction is recommended in patients with liver disease or malnourished. Genotyping may improve efficacy and safety. Within the current trend toward the minimization of opioid analgesia, it is consistently included in multimodal, non-opioid, or opioid-sparing therapies. Paracetamol is being recommended by guidelines as a first or second-line drug for acute pain and chronic pain, especially for patients with limited therapeutic options and for the elderly.
Rationale: Malnutrition often affects elderly patients and significantly contributes to the reduction in healthy life expectancy, causing high morbidity and mortality. In particular, protein malnutrition is one of the determinants of frailty and sarcopenia in elderly people. Methods:To investigate the role of amino acid supplementation in senior patients we performed an openlabel randomized trial and administered a peculiar branched-chain amino acid enriched mixture (BCAAem) or provided diet advice in 155 elderly malnourished patients. They were followed for 2 months, assessing cognitive performance by Mini Mental State Examination (MMSE), muscle mass measured by anthropometry, strength measure by hand grip and performance measured by the Timed Up and Go (TUG) test, the 30 seconds Chair Sit to Stand (30-s CST) test and the 4 meters gait speed test. Moreover we measured oxidative stress in plasma and mitochondrial production of ATP and electron flux in peripheral blood mononuclear cells.Results: Both groups improved in nutritional status, general health and muscle mass, strength and performance; treatment with BCAAem supplementation was more effective than simple diet advice in increasing MMSE (1.2 increase versus 0.2, p=0.0171), ATP production (0.43 increase versus -0.1, p=0.0001), electron flux (0.50 increase versus 0.01, p<0.0001) and in maintaining low oxidative stress. The amelioration of clinical parameters as MMSE, balance, four meter walking test were associated to increased mitochondrial function.Conclusions: Overall, our findings show that sustaining nutritional support might be clinically relevant in increasing physical performance in elderly malnourished patients and that the use of specific BCAAem might ameliorate also cognitive performance thanks to an amelioration of mitochondria bioenergetics. KeywordsMalnutrition, elderly patients, branched-chain amino acids, muscle mass and strength, mitochondrial activity and biogenesis, oxidative stress. 30-s CST, seconds chair sit to stand test; ADL, activity of daily living; BCAAem, branched chain amino acid enriched mixture; BCAAs, branched chain amino acids; BMI, body mass index; CIRS, cumulative index rating scale; COX-1 and 4, cytochrome C oxidase 1 and 4; FOXO, forkhead box O; GAPDH, glyceraldehyde 3phosphate dehydrogenase; GDS, geriatric depression scale; GLM, linear regression models; MFN-1 and 2, mitofusin-1 and 2; MMSE, mini-mental state examination; MNA, mini nutritional assessment test; mTOR, mechanistic target of rapamycin; NRF-1, nuclear respiratory factor-1; NO, nitric oxide; OECD, organisation for economic co-operation and development; PBMCs, peripheral blood mononuclear cells; ROS, reactive oxygen species; RT-PCR, real time PCR; TBARs, thiobarbituric acid reactive substances; TFAM, mitochondrial transcription factor A; TUG, timed up and go test.
Crohn’s disease (CD) is notably characterized by the expansion of visceral fat with small adipocytes expressing a high proportion of anti-inflammatory genes. Conversely, visceral fat depots in ulcerative colitis (UC) patients have never been characterized. Our study aims were a) to compare adipocyte morphology and gene expression profile and bacterial translocation in omental (OM) and mesenteric (MES) adipose tissue of patients with UC and CD, and b) to investigate the effect of bacterial infection on adipocyte proliferation in vitro. Specimens of OM and MES were collected from 11 UC and 11 CD patients, processed and examined by light microscopy. Gene expression profiles were evaluated in adipocytes isolated from visceral adipose tissue using microarray and RTqPCR validations. Bacteria within adipose tissue were immuno-detected by confocal scanning laser microscopy. Adipocytes were incubated with Enterococcus faecalis and cells counted after 24h. Morphology and molecular profile of OM and MES revealed that UC adipose tissue is less inflamed than CD adipose tissue. Genes linked to inflammation, bacterial response, chemotaxis and angiogenesis were down-regulated in adipocytes from UC compared to CD, whereas genes related to metallothioneins, apoptosis pathways and growth factor binding were up-regulated. A dense perinuclear positivity for Enterococcus faecalis was detected in visceral adipocytes from CD, whereas positivity was weak in UC. In vitro bacterial infection was associated with a five-fold increase in the proliferation rate of OM preadipocytes. Compared to UC, visceral adipose tissue from CD is more inflamed and more colonized by intestinal bacteria, which increase adipocyte proliferation. The influence of bacteria stored within adipocytes on the clinical course of IBD warrants further investigations.
Dietary supplementation of essential amino acids (EAAs) has been shown to promote healthspan. EAAs regulate, in fact, glucose and lipid metabolism and energy balance, increase mitochondrial biogenesis, and maintain immune homeostasis. Basic science and epidemiological results indicate that dietary macronutrient composition affects healthspan through multiple and integrated mechanisms, and their effects are closely related to the metabolic status to which they act. In particular, EAA supplementation can trigger different and even opposite effects depending on the catabolic and anabolic states of the organisms. Among others, gut-associated microbial communities (referred to as gut microbiota) emerged as a major regulator of the host metabolism. Diet and host health influence gut microbiota, and composition of gut microbiota, in turn, controls many aspects of host health, including nutrient metabolism, resistance to infection, and immune signals. Altered communication between the innate immune system and the gut microbiota might contribute to complex diseases. Furthermore, gut microbiota and its impact to host health change largely during different life phases such as lactation, weaning, and aging. Here we will review the accumulating body of knowledge on the impact of dietary EAA supplementation on the host metabolic health and healthspan from a holistic perspective. Moreover, we will focus on the current efforts to establish causal relationships among dietary EAAs, gut microbiota, and health during human development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.