Objectives
To estimate the effectiveness of mRNA vaccines against SARS-CoV-2 infection and severe covid-19 at different time after vaccination.
Design
Retrospective cohort study.
Setting
Italy, 27 December 2020 to 7 November 2021.
Participants
33 250 344 people aged ≥16 years who received a first dose of BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna) vaccine and did not have a previous diagnosis of SARS-CoV-2 infection.
Main outcome measures
SARS-CoV-2 infection and severe covid-19 (admission to hospital or death). Data were divided by weekly time intervals after vaccination. Incidence rate ratios at different time intervals were estimated by multilevel negative binomial models with robust variance estimator. Sex, age group, brand of vaccine, priority risk category, and regional weekly incidence in the general population were included as covariates. Geographic region was included as a random effect. Adjusted vaccine effectiveness was calculated as (1−IRR)×100, where IRR=incidence rate ratio, with the time interval 0-14 days after the first dose of vaccine as the reference.
Results
During the epidemic phase when the delta variant was the predominant strain of the SARS-CoV-2 virus, vaccine effectiveness against SARS-CoV-2 infection significantly decreased (P<0.001) from 82% (95% confidence interval 80% to 84%) at 3-4 weeks after the second dose of vaccine to 33% (27% to 39%) at 27-30 weeks after the second dose. In the same time intervals, vaccine effectiveness against severe covid-19 also decreased (P<0.001), although to a lesser extent, from 96% (95% to 97%) to 80% (76% to 83%). High risk people (vaccine effectiveness −6%, −28% to 12%), those aged ≥80 years (11%, −15% to 31%), and those aged 60-79 years (2%, −11% to 14%) did not seem to be protected against infection at 27-30 weeks after the second dose of vaccine.
Conclusions
The results support the vaccination campaigns targeting high risk people, those aged ≥60 years, and healthcare workers to receive a booster dose of vaccine six months after the primary vaccination cycle. The results also suggest that timing the booster dose earlier than six months after the primary vaccination cycle and extending the offer of the booster dose to the wider eligible population might be warranted.
We explored the risk factors associated with SARS-CoV-2 reinfections in Italy between August 2021 and March 2022. Regardless of the prevalent virus variant, being unvaccinated was the most relevant risk factor for reinfection. The risk of reinfection increased almost 18-fold following emergence of the Omicron variant compared with Delta. A severe first SARS-CoV-2 infection and age over 60 years were significant risk factors for severe reinfection.
We assessed the impact of COVID-19 vaccination in Italy, by estimating numbers of averted COVID-19 cases, hospitalisations, ICU admissions and deaths between January and September 2021, by age group and geographical macro areas. Timing and speed of vaccination programme implementation varied slightly between geographical areas, particularly for older adults. We estimated that 445,193 (17% of expected; range: 331,059−616,054) cases, 79,152 (32%; range: 53,209−148,756) hospitalisations, 9,839 ICU admissions (29%; range: 6,434−16,276) and 22,067 (38%; range: 13,571−48,026) deaths were prevented by vaccination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.