Neuropeptides are small protein molecules (composed of 3-100 amino-acid residues) that have been localized to discrete cell populations of central and peripheral neurons. In most instances, they coexist with low-molecular-weight neurotransmitters within the same neurons. At the subcellular level, neuropeptides are selectively stored, singularly or more frequently in combinations, within large granular vesicles. Release occurs through mechanisms different from classical calcium-dependent exocytosis at the synaptic cleft, and thus they account for slow synaptic and/or non-synaptic communication in neurons. Neuropeptide co-storage and coexistence can be observed throughout the central nervous system and are responsible for a series of functional interactions that occur at both pre- and post-synaptic levels. Thus, the subcellular site(s) of storage and sorting mechanisms into different neuronal compartments are crucial to the mode of release and the function of neuropeptides as neuronal messengers.
Ghrelin, an orexigenic peptide synthesized by endocrine cells of the gastric mucosa, is released in the bloodstream in response to a negative energetic status. Since discovery, the hypothalamus was identified as the main source of ghrelin in the CNS, and effects of the peptide have been mainly observed in this area of the brain. In recent years, an increasing number of studies have reported ghrelin synthesis and effects in specific populations of neurons also outside the hypothalamus. Thus, ghrelin activity has been described in midbrain, hindbrain, hippocampus, and spinal cord. The spectrum of functions and biological effects produced by the peptide on central neurons is remarkably wide and complex. It ranges from modulation of membrane excitability, to control of neurotransmitter release, neuronal gene expression, and neuronal survival and proliferation. There is not at present a general consensus concerning the source of ghrelin acting on central neurons. Whereas it is widely accepted that the hypothalamus represents the most important endogenous source of the hormone in CNS, the existence of extra-hypothalamic ghrelin-synthesizing neurons is still controversial. In addition, circulating ghrelin can theoretically be another natural ligand for central ghrelin receptors. This paper gives an overview on the distribution of ghrelin and its receptor across the CNS and critically analyses the data available so far as regarding the effects of ghrelin on central neurotransmission.
Niemann-Pick disease type C (NPC), caused by mutations in the Npc1 or Npc2 genes, is a progressive neurodegenerative disorder characterized by intracellular accumulation/redistribution of cholesterol in a number of tissues including the brain. This is accompanied by a severe loss of neurons in selected brain regions. In this study, we evaluated the role of lysosomal enzymes, cathepsins B and D, in determining neuronal vulnerability in NPC1-deficient (Npc1 ؊/؊ ) mouse brains. Our results showed that Npc1 ؊/؊ mice exhibit an age-dependent degeneration of neurons in the cerebellum but not in the hippocampus. The cellular level/expression and activity of cathepsins B and D are increased more predominantly in the cerebellum than in the hippocampus of Npc1 ؊/؊ mice. In addition, the cytosolic levels of cathepsins, cytochrome c, and Bax2 are higher in the cerebellum than in the hippocampus of Npc1 ؊/؊ mice, suggesting a role for these enzymes in the degeneration of neurons. This suggestion is supported by our observation that degeneration of cultured cortical neurons treated with U18666A, which induces an NPC1-like phenotype at the cellular level, can be attenuated by inhibition of cathepsin B or D enzyme activity. These results suggest that the increased level/activity and altered subcellular distribution of cathepsins may be associated with the underlying cause of neuronal vulnerability in Npc1 ؊/؊ brains. Therefore , their inhibitors may have therapeutic potential in attenuating NPC
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.