Apolipoprotein C-III (apoC-III) is a marker of triglyceride (TG)-rich lipoproteins, which are often increased in metabolic syndrome (MS). The T ؊ 455C polymorphism in the insulin-responsive element of the APOC3 gene influences TG and apoC-III levels. To evaluate the contribution of apoC-III levels and T ؊ 455C polymorphisms in the coronary artery disease (CAD) risk of MS patients, we studied 873 patients, 549 with CAD and 251 with normal coronary arteries. Patients were classified also as having or not having MS (MS, n ؍ 270; MS-free, n ؍ 603). Lipids, insulin, apolipoprotein levels, and APOC3 T ؊ 455C genotypes were evaluated. ApoC-III levels were significantly increased in MS patients, and the probability of having MS was correlated with increasing quartiles of apoC-III levels. MS patients with CAD had significantly higher apoC-III levels than did CAD-free MS patients. The carriership for the ؊ 455C variant multiplied the probability of CAD in MS in an allele-specific way and was associated with increased apoC-III and TG levels. Obesity was less frequent in MS carriers of the ؊ 455C allele than in MS noncarriers (21.6% vs. 34.8%, P Ͻ 0.05). In conclusion, apoC-III-rich lipoprotein metabolism and the APOC3 polymorphism have relevant impacts on the CAD risk of MS patents.
Cigarette smoking is an important risk factor for atherosclerosis, a chronic inflammatory disease. However the underlying factors of this effect are unclear. It has been hypothesized that water-soluble components of cigarette smoke can directly promote oxidative stress in vasculature and blood cells. Aim of this study was to study the relationship between oxidative stress and inflammation in a group of young smokers. To do this we evaluated: 1) the oxidation products of phospholipids (oxPAPC) in peripheral blood mononuclear cells (PBMC); 2) their role in causing PBMC reactive oxygen species (ROS) generation and changes in GSH; 3) the expression of the transcription factor NF-E2-related factor 2 (Nrf2) and of related antioxidant genes (ARE); 4) the activation of NF-kB and C-reactive protein (CRP) values. We studied 90 healthy volunteers: 32 non-smokers, 32 moderate smokers (5–10 cigarettes/day) and 26 heavy smokers (25–40 cigarettes/day). OxPAPC and p47phox expression, that reasonably reflects NADPH oxidase activity, were higher in moderate smokers and heavy smokers than in non-smokers (p<0.01), the highest values being in heavy smokers (p<0.01). In in vitro studies oxPAPC increased ROS generation via NADPH oxidase activation. GSH in PBMC and plasma was lower in moderate smokers and heavy smokers than in non-smokers (p<0.01), the lowest values being in heavy smokers (p<0.01). Nrf2 expression in PBMC was higher in moderate smokers than in non-smokers (p<0.01), but not in heavy smokers, who had the highest levels of NF-kB and CRP (p<0.01). In in vitro studies oxPAPC dose-dependently increased NF-kB activation, whereas at the highest concentrations Nrf2 expression was repressed. The small interference (si) RNA-mediated knockdown of NF-κB/p65 increased about three times the expression of Nrf2 stimulated with oxPAPC. Cigarette smoke promotes oxPAPC formation and oxidative stress in PBMC. This may cause the activation of NF-kB that in turn may participate in the negative regulation of Nrf2/ARE pathway favouring inflammation.
Several polymorphisms in the apolipoprotein C-III (apoC-III) gene have been associated with hypertriglyceridemia, but the link with coronary artery disease risk is still controversial. In particular, apoC-III promoter sequence variants in the insulin responsive element (IRE), constitutively resistant to downregulation by insulin, have never been investigated in this connection. We studied a total of 800 patients, 549 of whom had angiographically documented coronary atherosclerosis, whereas 251 had normal coronary arteriograms. We measured plasma lipids, insulin, apoA-I, apoB, and apoC-III and assessed three polymorphisms in the apoC-III gene, namely, T-455C in the IRE promoter region, C1100T in exon 3, and Sst1 polymorphic site (S1/S2) in the 3 untranslated region. Each variant influenced triglyceride levels, but only the T-455C (in homozygosity) and S2 alleles influenced apoC-III levels. In coronary artery disease (CAD) patients, 18.6% were homozygous for the ؊ 455C variant compared with only 9.2% in CAD-free group ( P Ͻ 0.001). In logistic regression models, homozygosity for ؊ 455C variant was associated with a significantly increased risk of CAD (OR ؍ 2.5 and 2.18 for unadjusted and adjusted models, respectively) suggesting that it represents an independent genetic susceptibility factor for CAD. -
The findings of the present study indicate that nebivolol, through its antioxidant properties, increases NO also by decreasing its oxidative inactivation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.