2+ ihandling proteins changes identified, an enhanced I NaL seems to be a major contributor to the electrophysiological and Ca
To investigate the roles of cross-bridge dissociation and cross-bridge-induced thin filament activation in the time course of muscle relaxation, we initiated force relaxation in single myofibrils from skeletal muscles by rapidly (approximately 10 ms) switching from high to low [Ca(2+)] solutions. Full force decay from maximal activation occurs in two phases: a slow one followed by a rapid one. The latter is initiated by sarcomere "give" and dominated by inter-sarcomere dynamics (see the companion paper, Stehle, R., M. Krueger, and G. Pfitzer. 2002. Biophys. J. 83:2152-2161), while the former occurs under nearly isometric conditions and is sensitive to mechanical perturbations. Decreasing the Ca(2+)-activated force preceding the start of relaxation does not increase the rate of the slow isometric phase, suggesting that cycling force-generating cross-bridges do not significantly sustain activation during relaxation. This conclusion is strengthened by the finding that the rate of isometric relaxation from maximum force to any given Ca(2+)-activated force level is similar to that of Ca(2+)-activation from rest to that given force. It is likely, therefore, that the slow rate of force decay in full relaxation simply reflects the rate at which cross-bridges leave force-generating states. Because increasing [P(i)] accelerates relaxation while increasing [MgADP] slows relaxation, both forward and backward transitions of cross-bridges from force-generating to non-force-generating states contribute to muscle relaxation.
In striated muscle, force generation and phosphate (P(i)) release are closely related. Alterations in the [P(i)] bathing skinned fibers have been used to probe key transitions of the mechanochemical coupling. Accuracy in this kind of studies is reduced, however, by diffusional barriers. A new perfusion technique is used to study the effect of [P(i)] in single or very thin bundles (1-3 microM in diameter; 5 degrees C) of rabbit psoas myofibrils. With this technique, it is possible to rapidly jump [P(i)] during contraction and observe the transient and steady-state effects on force of both an increase and a decrease in [P(i)]. Steady-state isometric force decreases linearly with an increase in log[P(i)] in the range 500 microM to 10 mM (slope -0.4/decade). Between 5 and 200 microM P(i), the slope of the relation is smaller ( approximately -0.07/decade). The rate constant of force development (k(TR)) increases with an increase in [P(i)] over the same concentration range. After rapid jumps in [P(i)], the kinetics of both the force decrease with an increase in [P(i)] (k(Pi(+))) and the force increase with a decrease in [P(i)] (k(Pi(-))) were measured. As observed in skinned fibers with caged P(i), k(Pi(+)) is about three to four times higher than k(TR), strongly dependent on final [P(i)], and scarcely modulated by the activation level. Unexpectedly, the kinetics of force increase after jumps from high to low [P(i)] is slower: k(Pi(-)) is indistinguishable from k(TR) measured at the same [P(i)] and has the same calcium sensitivity.
Ca2+ is the primary regulator of force generation by cross-bridges in striated muscle activation and relaxation. Relaxation is as necessary as contraction and, while the kinetics of Ca2+-induced force development have been investigated extensively, those of force relaxation have been both studied and understood less well. Knowledge of the molecular mechanisms underlying relaxation kinetics is of special importance for understanding diastolic function and dysfunction of the heart. A number of experimental models, from whole muscle organs and intact muscle fibres down to single myofibrils, have been used to explore the cascade of kinetic events leading to mechanical relaxation. By using isolated myofibrils and fast solution switching techniques we can distinguish the sarcomeric mechanisms of relaxation from those of myoplasmic Ca2+ removal. There is strong evidence that cross-bridge mechanics and kinetics are major determinants of the time course of striated muscle relaxation whilst thin filament inactivation kinetics and cooperative activation of thin filament by cycling, force-generating cross-bridges do not significantly limit the relaxation rate. Results in myofibrils can be explained well by a simple two-state model of the cross-bridge cycle in which the apparent rate of the force generating transition is modulated by fast, Ca2+-dependent equilibration between off- and on-states of actin. Inter-sarcomere dynamics during the final rapid phase of full force relaxation are responsible for deviations from this simple model.
The R403Q mutation in β-myosin heavy chain was the first mutation to be identified as responsible for familial hypertrophic cardiomyopathy (FHC). In spite of extensive work on the functional sequelae of this mutation, the mechanism by which the mutant protein causes the disease has not been definitely identified. Here we directly compare contraction and relaxation mechanics of single myofibrils from left ventricular samples of one patient carrying the R403Q mutation to those from a healthy control heart. Tension generation and relaxation following sudden increase and decrease in [Ca 2+ ] were much faster in the R403Q myofibrils with relaxation rates being the most affected parameters. The results show that the R403Q mutation leads to an apparent gain of protein function but a greater energetic cost of tension generation. Increased energy cost of tension generation may be central to the FHC disease process, help explain some unresolved clinical observations, and carry significant therapeutic implications. The R403Q mutation in the β-myosin heavy chain was the first mutation to be identified as responsible for familial hypertrophic cardiomyopathy (FHC) (Geisterfer-Lowrance et al. 1990), a primary disease of the cardiac sarcomere that is the most commonly identified cause of cardiac sudden death in young people. The functional sequelae of the R403Q mutation have been extensively investigated using a variety of experimental models and approaches (Cuda et al. 1993;Lankford et al. 1995;Sata & Ikebe, 1996;Geisterfer-Lowrance et al. 1996;Marian et al. 1999;Tyska et al. 2000;Lowey, 2002;Keller et al. 2004) but the cardiac sarcomeres of affected individuals have never been directly examined. Here we compare contraction and relaxation of left ventricular myofibrils from one patient carrying the R403Q mutation to those from a healthy control heart. To investigate sarcomere mechanics we use previously This paper has online supplemental material. published techniques to measure and control the force and length of single myofibrils activated and relaxed by fast solution switching (Tesi et al. 2002;Piroddi et al. 2007). One advantage of this approach was that we could probe the acto-myosin transduction cycle while keeping the native structured sarcomere environment of the mutant protein. Preliminary report of this work has been published in abstract form ). Methods PatientsThe investigation conforms with the principles outlined in the Declaration of Helsinki and had been approved by the local Ethics Committee. Informed consent was given for both mutational analysis and mechanical experiments.A 24-year-old man, with a severe family history of premature cardiac death, diagnosed at 13 with FHC, and
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.