Modular self-assembling on-orbit robots have the potential to reduce mission costs, increase reliability, and permit on-orbit repair and refueling. Modules with a variety of specialized capabilities would self-assemble from orbiting inventories. The assembled modules would then share resources such as power and sensors. As each free-flying module carries its own attitude control actuators, the assembled system has substantial sensor and actuator redundancy. Sensor redundancy enables sensor fusion that reduces measurement error. Actuator redundancy gives a system greater flexibility in managing its fuel usage. In this paper, the control of self-assembling space robots is explored in simulations and experiments. Control and sensor algorithms are presented that exploit the sensor and actuator redundancy. The algorithms address the control challenges introduced by the dynamic interactions between modules, the distribution of fuel resources among modules, and plume impingement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.