Eradicating the malignant stem cell is the ultimate challenge in the treatment of leukaemia. Leukaemic stem cells (LSC) hijack the normal haemopoietic niche, where they are mainly protected from cytotoxic drugs. The anti-leukaemic effect of L-asparaginase (ASNase) has been extensively investigated in acute lymphoblastic leukaemia, but only partially in acute myeloid leukaemia (AML). We explored the susceptibility of AML-LSC to ASNase as well as the role of the two major cell types that constitute the bone marrow (BM) microenvironment, i.e., mesenchymal stromal cells (MSC) and monocytes/macrophages. Whilst ASNase was effective on both CD34 + CD38 + and CD34 + CD38 À LSC fractions, MSC and monocytes/ macrophages partially counteracted the effect of the drug. Indeed, the production of cathepsin B, a lysosomal cysteine protease, by BM monocytic cells and by AML cells classified as French-American-British M5 is related to the inactivation of ASNase. Our work demonstrates that, while MSC and monocytes/macrophages may provide a protective niche for AML cells, ASNase has a cytotoxic effect on AML blasts and, importantly, LSC subpopulations. Thus, these features should be considered in the design of future clinical studies aimed at testing ASNase efficacy in AML patients.
Despite extensive research and development of new treatments, acute myeloid leukemia (AML)-backbone therapy has remained essentially unchanged over the last decades and is frequently associated with poor outcomes. Eradicating the leukemic stem cells (LSCs) is the ultimate challenge in the treatment of AML. Emerging evidence suggests that AML remodels the bone marrow (BM) niche into a leukemia-permissive microenvironment while suppressing normal hematopoiesis. The mechanism of stromal-mediated protection of leukemic cells in the BM is complex and involves many adhesion molecules, chemokines, and cytokines. Targeting these factors may represent a valuable approach to complement existing therapies and overcome microenvironment-mediated drug resistance. Some strategies for dislodging LSCs and leukemic blasts from their protective niche have already been tested in patients and are in different phases of the process of clinical development. Other strategies, such as targeting the stromal cells remodeling processes, remain at pre-clinical stages. Development of humanized xenograft mouse models, which overcome the mismatch between human leukemia cells and the mouse BM niche, is required to generate physiologically relevant, patient-specific human niches in mice that can be used to unravel the role of human AML microenvironment and to carry out preclinical studies for the development of new targeted therapies.
Chimeric Antigen Receptor (CAR) T cell therapy is a promising treatment for acute myeloid leukemia (AML), but a limited efficacy was reported from ongoing clinical trials. The capacity of engineered T cells to infiltrate into the bone marrow (BM) niche, where leukemic stem cells (LSC) reside, strongly impacts the success of the treatment. Ex vivo manipulation of CAR T cells affects the expression of several chemokine receptors and may alter the capacity of infused cells to migrate to BM. The chemokine ligand 12 (CXCL12), released by mesenchymal stromal cells (MSCs) within the medullary niche, and its chemokine receptor 4 (CXCR4) regulate leukocytes trafficking to the BM. In AML, CXCL12 binds CXCR4 over-expressed on blasts, promoting their homing in the niche. CXCR4 expression is drastically downregulated during the culture of cytokine induced killer (CIK) cells, an interesting effector T cell population with acquired NK-like cytotoxicity along with minimal alloreactivity. Therefore, combining the expression of CD33.CAR with the over-expression of CXCR4 might facilitate CAR-CIKs homing to the BM and subsequent leukemia eradication. We designed two bicistronic Sleeping Beauty transposon vectors: CXCR4(IRES)CD33.CAR and CD33.CAR(2A)CXCR4. The monocistronic CD33.CAR was used as control. We observed that both CD33.CAR(2A)CXCR4-CIKs (n=22, P<0.0001) and CXCR4(IRES)CD33.CAR-CIKs (n=9, P<0.0001) maintained CXCR4 over-expression during culture, whereas in CD33.CAR-CIKs was drastically downregulated (n=22). However, CD33.CAR expression was lower in CXCR4(IRES)CD33.CAR-CIKs (n=8, P<0.0001) compared to CD33.CAR-CIKs, while CD33.CAR(2A)CXCR4-CIKs (n=11) exhibited a significant co-expression of both proteins against control (P=0.001). CXCR4(IRES)CD33.CAR-CIKs and CD33.CAR(2A)CXCR4-CIKs maintained all CAR-associated in vitro effector functions, eliminating CD33+ KG1 target cell line, releasing cytokines (IL-2 and IFN-γ) and proliferating in an antigen-specific manner. However, CXCR4(IRES)CD33.CAR-CIKs exhibited lower effector responses against control, due to lower CAR expression. Chemotaxis assays toward recombinant CXCL12 confirmed both CXCR4(IRES)CD33.CAR-CIKs (n=7, P=0.01) and CD33.CAR(2A)CXCR4-CIKs (n=8, P=0.0006) displayed a migration advantage over CD33.CAR-CIKs (n=12) with a mean percentage of migration of 58.5% and 67.2% respectively, compared to 40.1%. Interestingly, CD33.CAR(2A)CXCR4-CIKs (n=2) showed an increased specific chemotactic response toward healthy (n=3) and AML-derived MSC (n=2) supernatants, which could be inhibited by the use of the CXCR4 antagonist Plerixafor. Moreover, when infused intravenously into NSG mice, significantly higher proportions of CD33.CAR(2A)CXCR4-CIKs were recovered in the femur BM compared to controls (P=0.0068). In conclusion, CD33.CAR(2A)CXCR4-CIKs, reaching the medullary niche more effectively, have the potential to more efficiently target the residing LSC responsible for the high relapse rates in AML. Disclosures Dotti: Tessa Therapeutics: Consultancy; Bellicum Pharmaceuticals: Consultancy; Catamaran: Consultancy. Biondi: Bluebird: Other: Advisory Board; Amgen: Honoraria; Incyte: Consultancy, Other: Advisory Board; Novartis: Honoraria; Colmmune: Honoraria.
Until a few years ago, the onset of acute myeloid leukemia (AML) was entirely ascribed to genetic lesions in hematopoietic stem cells. These mutations generate leukemic stem cells, which are known to be the main ones responsible for chemoresistance and relapse. However, in the last years, increasing evidence demonstrated that dynamic interplay between leukemic cells and bone marrow (BM) niche is of paramount relevance in the pathogenesis of myeloid malignancies, including AML. Specifically, BM stromal niche components, such as mesenchymal stromal cells (MSCs) and their osteoblastic cell derivatives, play a key role not only in supporting normal hematopoiesis but also in the manifestation and progression of myeloid malignancies. Here, we reviewed recent clinical and experimental findings about how genetic and functional alterations in MSCs and osteolineage progeny can contribute to leukemogenesis and how leukemic cells in turn generate a corrupted niche able to support myeloid neoplasms. Moreover, we discussed how the newest single-cell technologies may help dissect the interactions between BM stromal cells and malignant hematopoiesis. The deep comprehension of the tangled relationship between stroma and AML blasts and their modulation during disease progression may have a valuable impact on the development of new microenvironment-directed therapeutic strategies, potentially useful for a wide cohort of patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.