The latest guidelines for the hospital care of patients affected by coronavirus disease 2019 (COVID-19)-related acute respiratory failure have moved towards the widely accepted use of noninvasive respiratory support (NIRS) as opposed to early intubation at the pandemic onset. The establishment of severe COVID-19 pneumonia goes through different pathophysiological phases that partially resemble typical acute respiratory distress syndrome (ARDS) and have been categorized into different clinical–radiological phenotypes. These can variably benefit on the application of external positive end-expiratory pressure (PEEP) during noninvasive mechanical ventilation, mainly due to variable levels of lung recruitment ability and lung compliance during different phases of the disease. A growing body of evidence suggests that intense respiratory effort producing excessive negative pleural pressure swings (Ppl) plays a critical role in the onset and progression of lung and diaphragm damage in patients treated with noninvasive respiratory support. Routine respiratory monitoring is mandatory to avoid the nasty continuation of NIRS in patients who are at higher risk for respiratory deterioration and could benefit from early initiation of invasive mechanical ventilation instead. Here we propose different monitoring methods both in the clinical and experimental settings adapted for this purpose, although further research is required to allow their extensive application in clinical practice. We reviewed the needs and available tools for clinical–physiological monitoring that aims at optimizing the ventilatory management of patients affected by acute respiratory distress syndrome due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection.
Proteoglycans (PG) are altered in the asthmatic airway wall. Because PGs are known to affect cell proliferation and apoptosis, we hypothesized that alterations in PG might influence the airway smooth muscle (ASM) hyperplasia observed in the asthmatic airway. Human ASM cells were seeded on plastic or plates coated with decorin (Dcn), biglycan (Bgn), or collagen type I (Col I) (1, 3, and 10 microg/ml). Cells were stimulated with platelet-derived growth factor (PDGF), and cell number was assessed at 0, 48, and 96 h. Cell proliferation was measured by bromodeoxyuridine (BrdU) incorporation and apoptosis by annexin V and propidium iodide staining at 48 h post-PDGF stimulation. A significant decrease in cell number was observed with cells seeded on Dcn (10 microg/ml) at 0, 48, and 96 h (P < 0.01). Dcn induced both decreases in BrdU incorporation and increases in annexin V staining (P < 0.05). Bgn decreased cell number at time 0 only (P < 0.05) and affected neither proliferation nor apoptosis. Col I (10 mug/ml) caused a significant increase in cell number at 48 and 96 h (P < 0.01). Adding exogenous Dcn (1-30 microg/ml) to the medium had no effect on cell number. Exposing Dcn-coated matrices to chondroitinase ABC, an enzyme that degrades glycosaminoglycan side chains, reversed the Dcn-induced decrease in cell number. These studies demonstrate that different PGs have variable effects on ASM cell proliferation and apoptosis. Recently described decreases in Dcn in the asthmatic airway wall could potentially permit more exuberant ASM growth.
Proteoglycans (PG) have important effects on the mechanical properties of tissues and the phenotype of various structural cells. Little is known about changes in PG deposition in the airways in animal models of asthma. We studied changes in PG in the airway wall of Brown Norway rats sensitized to ovalbumin (OA) and exposed to repeated OA challenge. Control (Sal) animals were sensitized and challenged with saline. After the 3rd challenge, animals were killed and lungs fixed in formalin. Tissue sections were incubated with antibodies to the small, leucine-rich PG, decorin, and biglycan and collagen type I. Airways were classified according to basement membrane perimeter length (< or =0.99, 1-2.99, and > or =3 mm). Decorin, biglycan, and collagen type I were increased in the airways of OA vs. Sal rats. Remodeling was most prominent in central airways. The distribution of PG differed with respect to the subepithelial vs. airway smooth muscle (ASM) vs. adventitial layer. Whereas biglycan was readily detected within the ASM, decorin and collagen were detected outside the ASM and especially in the adventitial layer. Differences in the distribution of these molecules within the layers of the airway wall may reflect their specific functional roles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.