During bacterial infections, pathogen-associated molecular patterns (PAMPs) induce cytokine/chemokine release in immunoactive cells. This increases corticosteroid-resistant airway inflammation in chronic obstructive pulmonary disease (COPD) and leads to exacerbations. Anti-inflammatory therapies other than corticosteroids are required and resveratrol is currently under discussion. Resveratrol is an activator of sirtuins, which are class III histone deacetylases (HDACs). We suggested that human airway smooth muscle cells (HASMCs) release COPD-associated cytokines/chemokines in response to lipoteichoic acid (LTA), a major PAMP of gram-positive bacteria and that resveratrol is superior to the corticosteroid dexamethasone in suppressing these cytokines/chemokines. Cultivated HASMCs of patients with COPD were pre-incubated with resveratrol or dexamethasone before stimulation with LTA. CCL2, GM-CSF, IL-6 and IL-8 were analysed in culture supernatants by enzyme-linked immunosorbent assay. Drug effects were investigated in the absence and presence of trichostatin A (TSA), an inhibitor of class I/II HDACs, and EX527, an inhibitor of the sirtuin SIRT1. LTA induced robust cytokine/chemokine release. Resveratrol was superior to dexamethasone in reducing CCL-2, IL-6 and IL-8 in LTA-exposed HASMCs of patients with COPD. Both drugs were equally effective in reducing GM-CSF. Resveratrol effects were partially reversed by EX527 but not by TSA. Dexamethasone effects were partially reversed by TSA but not by EX527. We conclude that HASMCs contribute to the increase in airway inflammation in COPD exacerbations caused by gram-positive bacterial infections. Our data suggest resveratrol as an alternative anti-inflammatory therapy in infection-induced COPD exacerbations. Resveratrol and corticosteroids suppress cytokine/chemokine expression through activation of SIRT1 or interaction with class I/II HDACs, respectively, in HASMCs.
Bacterial infections induce exacerbations in chronic lung diseases, e.g., chronic obstructive pulmonary disease (COPD), by enhancing airway inflammation. Exacerbations are frequently associated with right heart decompensation and accelerate disease progression. Endothelin receptor antagonists (ERAs) might have therapeutic potential as pulmonary vasodilators and anti-inflammatory agents, but utility in exacerbations of chronic lung diseases is unknown. We hypothesized that cytokine releases induced by lipopolysaccharide (LPS), the major bacterial trigger of inflammation, are reduced by ERAs in pulmonary vascular smooth muscle cells (PVSMCs). Ex vivo cultivated human PVSMCs were preincubated with the endothelin-A-receptor selective inhibitor ambrisentan, with the endothelin-B-receptor selective inhibitorhexanoate], or with the dual blocker bosentan before stimulation with smooth LPS (S-LPS), rough LPS (Re-LPS), or a mixture of long and short forms (M-LPS). Expression of cytokines and LPS receptors (TLR4, CD14) were analyzed via enzyme-linked immunosorbent assay (ELISA) and/or quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). All LPS forms induced interleukin (IL)-6-, IL-8-, and granulocyte macrophage-colony stimulating factor (GM-CSF) release. Bosentan and BQ788 inhibited M-LPS-induced release of all cytokines and soluble CD14 (sCD14) but not TLR4 expression. Ambrisentan blocked M-LPS-induced IL-6 release but not IL-8, GM-CSF, or LPS receptors. IL-8 release induced by S-LPS, which requires CD14 to activate TLR4, was blocked by bosentan and BQ788. IL-8 release induced by Re-LPS, which does not require CD14 to activate TLR4, was insensitive to both bosentan and BQ788. In conclusion, PVSMCs contribute to inflammation in bacteriainduced exacerbations of chronic lung diseases. Inhibition of the endothelin-B receptor suppresses cytokine release induced by long/smooth LPS attributable to sCD14 downregulation. ERAs, particularly when targeting the endothelin-B receptor, might have therapeutic utility in exacerbations of chronic lung diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.