Land-use and land-cover (LULC) classification using remote sensing imagery plays a vital role in many environment modeling and land-use inventories. In this study, a hybrid feature optimization algorithm along with a deep learning classifier is proposed to improve the performance of LULC classification, helping to predict wildlife habitat, deteriorating environmental quality, haphazard elements, etc. LULC classification is assessed using Sat 4, Sat 6 and Eurosat datasets. After the selection of remote-sensing images, normalization and histogram equalization methods are used to improve the quality of the images. Then, a hybrid optimization is accomplished by using the local Gabor binary pattern histogram sequence (LGBPHS), the histogram of oriented gradient (HOG) and Haralick texture features, for the feature extraction from the selected images. The benefits of this hybrid optimization are a high discriminative power and invariance to color and grayscale images. Next, a human group-based particle swarm optimization (PSO) algorithm is applied to select the optimal features, whose benefits are a fast convergence rate and ease of implementation. After selecting the optimal feature values, a long short-term memory (LSTM) network is utilized to classify the LULC classes. Experimental results showed that the human group-based PSO algorithm with a LSTM classifier effectively well differentiates the LULC classes in terms of classification accuracy, recall and precision. A maximum improvement of 6.03% on Sat 4 and 7.17% on Sat 6 in LULC classification is reached when the proposed human group-based PSO with LSTM is compared to individual LSTM, PSO with LSTM, and Human Group Optimization (HGO) with LSTM. Moreover, an improvement of 2.56% in accuracy is achieved, compared to the existing models, GoogleNet, Visual Geometric Group (VGG), AlexNet, ConvNet, when the proposed method is applied.
The aim of this paper is to highlight how the employment of Light Detection and Ranging (LiDAR) technique can enhance greatly the performance and reliability of many monitoring systems applied to the Earth Observation (EO) and Environmental Monitoring. A short presentation of LiDAR systems, underlying their peculiarities, is first given. References to some review papers are highlighted, as they can be regarded as useful guidelines for researchers interested in using LiDARs. Two case studies are then presented and discussed, based on the use of 2D and 3D LiDAR data. Some considerations are done on the performance achieved through the use of LiDAR data combined with data from other sources. The case studies show how the LiDAR-based systems, combined with optical Very High Resolution (VHR) data, succeed in improving the analysis and monitoring of specific areas of interest, specifically how LiDAR data help in exploring external environment and extracting building features from urban areas. Moreover the discussed Case Studies demonstrate that the use of the LiDAR data, even with a low density of points, allows the development of an automatic procedure for accurate building features extraction, through object-oriented classification techniques, therefore by underlying the importance that even simple LiDAR-based systems play in EO and Environmental Monitoring.
Timely information on land use, vegetation coverage, and air and water quality, are crucial for monitoring and managing territories, especially for areas in which there is dynamic urban expansion. However, getting accessible, accurate, and reliable information is not an easy task, since the significant increase in remote sensing data volume poses challenges for the timely processing and analysis of the resulting massive data volume. From this perspective, classical methods for urban monitoring present some limitations and more innovative technologies, such as artificial-intelligence-based algorithms, must be exploited, together with performing cloud platforms and ad hoc pre-processing steps. To this end, this paper presents an approach to the use of cloud-enabled deep-learning technology for urban sprawl detection and monitoring, through the fusion of optical and synthetic aperture radar data, by integrating the Google Earth Engine cloud platform with deep-learning techniques through the use of the open-source TensorFlow library. The model, based on a U-Net architecture, was applied to evaluate urban changes in Phoenix, the second fastest-growing metropolitan area in the United States. The available ancillary information on newly built areas showed good agreement with the produced change detection maps. Moreover, the results were temporally related to the appearance of the SARS-CoV-2 (commonly known as COVID-19) pandemic, showing a decrease in urban expansion during the event. The proposed solution may be employed for the efficient management of dynamic urban areas, providing a decision support system to help policy makers in the measurement of changes in territories and to monitor their impact on phenomena related to urbanization growth and density. The reference data were manually derived by the authors over an area of approximately 216 km2, referring to 2019, based on the visual interpretation of high resolution images, and are openly available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.