Consensus clustering involves combining multiple clusterings of the same set of objects to achieve a single clustering that will, hopefully, provide a better picture of the groupings that are present in a dataset. This paper reports the use of consensus clustering methods on sets of chemical compounds represented by 2D fingerprints. Experiments with DUD, IDAlert, MDDR and MUV data suggests that consensus methods are unlikely to result in significant improvements in clustering effectiveness as compared to the use of a single clustering method.
Standardization is used to ensure that the variables in a similarity calculation make an equal contribution to the computed similarity value. This paper compares the use of seven different methods that have been suggested previously for the standardization of integer-valued or real-valued data, comparing the results with unstandardized data. Sets of structures from the MDL Drug Data Report and IDAlert databases and represented by Pipeline Pilot physicochemical parameters, molecular holograms and Molconn-Z parameters are clustered using the k-means and Ward's clustering methods. The resulting classifications are evaluated in terms of the degree of clustering of active compounds selected from eleven different biological activity classes, with these classes also being used in similarity searches. It is shown that there is no consistent pattern when the various standardization methods are ranked in order of decreasing effectiveness and that there is no obvious performance benefit (when compared to unstandardized data) that is likely to be obtained from the use of any particular standardization method.
Since entering the 21st century, “economic globalization” has become a hot topic. Under the impact of “economic globalization”, the competition of the Chinese domestic market continues to intensify, and Chinese enterprises are facing enormous pressure for survival and development. Among them, there are many cases of poor business operation caused by financial crisis which have directly put these companies in trouble, even causing them to go bankrupt. Therefore, it is very practical to establish a scientific data model to analyze and predict the financial data of enterprises. It can not only monitor the financial status of the enterprise in real time, but also play an effective financial early warning role. This research focuses on using the combined forecasting method to establish a more comprehensive financial early warning model to solve the related financial crisis forecasting problem. Specifically, two different forecasting methods are first adopted in this study to conduct financial early warning research. The first is time series forecasting. It is a dynamic data processing statistical method, which is often used in forecasting research in the business field. The second is the BP neural network algorithm (referred to as BP), which is an error back-propagation learning algorithm, which is often used in the field of artificial intelligence. Then, the prediction error values of the two methods are compared and they are applied to the combined prediction method. Finally, a new error prediction formula is obtained. The result shows that the BP method provides the best performance over others, while the combinational forecasting method offers better performance than any single method.
A blockchain-based continuous micropayment is a crucial component of the digital economy as it facilitates transactions and promotes small purchases. However, due to the throughput limitations of blockchain, payment channels (PC) are often used to process a large volume of transactions through an off-chain mode. Nevertheless, the introduction of PC requires a trusted third party to ensure transaction security, which creates an additional security assumption since only the first and last transactions can be witnessed by other system users. To address this issue, we propose a novel micropayment scheme based on lockable signatures. All transactions in the PC form a continuous microtransaction hash-chain (CMHC) to prevent malicious users from obtaining transaction information during the process. Furthermore, all locks in the CMHC are invisible during the entire transaction process, and all information is transferred in a tamper-resistant manner. We provide corresponding security analysis and conduct a series of evaluations. The results show that the proposed scheme performs better than the state-of-the-art solutions in terms of transaction time and verification costs. This lockable signature-based micropayment scheme not only guarantees security but also improves transaction speed and efficiency, thereby promoting the development of the digital economy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.