Abstract:Comparative study of two least square methods for tuning CCIR pathloss model is presented. The first model tuning approach is implemented by the addition or subtraction of the root mean square error (RMSE) based on whether the sum of errors is positive or negative. The second method is implemented by addition of a composition function of the residue to the original CCIR model pathloss prediction. The study is based on field measurement carried out in a suburban area for a GSM network in the 1800 MHz frequency band. The results show that the untuned CCIR model has a root mean square error (RMSE) of 17.33 dB and prediction accuracy of 85.33%. On the other hand, the pathloss predicted by the RMSE tuned CCIR model has RMSE of 4.09dB and prediction accuracy of 96.82% while the pathloss predicted by the composition function tuned CCIR model has RME of 2.15 dB and prediction accuracy of 98.39%. In all, both methods are effective in minimizing the error to within the acceptable value of less than 7 dB. However, the composition function approach has better pathloss prediction performance with smaller RMSE and higher prediction accuracy than the RMSE-based approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.