Alzheimer's disease (AD) brains display A beta (Abeta) plaques, inflammatory changes and neurofibrillary tangles (NFTs). Converging evidence suggests a neuronal origin of Abeta. We performed a temporal study of intraneuronal Abeta accumulation in Down syndrome (DS) brains. Sections from temporal cortex of 70 DS cases aged 3 to 73 years were examined immunohistochemicallyf or immunoreactivity (IR) for the Abeta N-terminal, the Abeta40 C-terminus and the Abeta42 C-terminus. N-terminal antibodies did not detect intracellular Abeta. Abeta40 antibodies did not detect significant intracellular Abeta, but older cases showed Abeta40 IR in mature plaques. In contrast, Abeta42 antibodies revealed clear-cut intraneuronal IR. All Abeta42 antibodies tested showed strong intraneuronal Abeta42 IR in very young DS patients, especially in theyoungest cases studied (e.g., 3 or 4yr. old), but this IR declined as extracellular Abeta plaques gradually accumulated and matured. No inflammatory changes were associated with intraneuronal Abeta. We also studied the temporal development of gliosis and NFT formation, revealing that in DS temporal cortex, inflammation and NFT follow Abeta deposition. We conclude that Abeta42 accumulates intracellularly prior to extracellular Abeta deposition in Down syndrome, and that subsequent maturation of extracellular Abeta deposits elicits inflammatory responses andprecedes NFTs.
Progressive cerebral deposition of amyloid‐β (Aβ) peptide, an early and essential feature of Alzheimer's disease (AD), is accompanied by an inflammatory reaction marked by microgliosis, astrocytosis, and the release of proinflammatory cytokines. Mucosal administration of disease‐implicated proteins can induce antigen‐specific anti‐inflammatory immune responses in mucosal lymphoid tissue which then act systemically. We hypothesized that chronic mucosal administration of Aβ peptide might induce an anti‐inflammatory process in AD brain tissue that could beneficially affect the neuropathological findings. To test this hypothesis, we treated PDAPP mice, a transgenic line displaying numerous neuropathological features of AD, between the ages of ∼5 and ∼12 months with human Aβ synthetic peptide mucosally each week. We found significant decreases in the cerebral Aβ plaque burden and Aβ42 levels in mice treated intranasally with Aβ peptide versus controls treated with myelin basic protein or left untreated. This lower Aβ burden was associated with decreased local microglial and astrocytic activation, decreased neuritic dystrophy, serum anti‐Aβ antibodies of the IgG1 and IgG2b classes, and mononuclear cells in the brain expressing the anti‐inflammatory cytokines interleukin‐4, interleukin‐10, and tumor growth factor‐β. Our results demonstrate that chronic nasal administration of Aβ peptide can induce an immune response to Aβ that decreases cerebral Aβ deposition, suggesting a novel mucosal immunological approach for the treatment and prevention of AD. Ann Neurol 2000;48:567–579
The complement system constitutes a series of enzymatic steps involved in the inflammatory response and is activated in Alzheimer's disease (AD). Using Down's syndrome (DS) brains as a temporal model for the progression of AD, we examined components of the complement cascade and their relationship to other principal events in AD pathology: Abeta42 deposition, neuritic changes, neurofibrillary tangles (NFTs), and gliosis (reactive astrocytes, activated microglia). Adjacent sections of frontal cortex from 24 DS subjects ranging in age from 12 to 73 years were immunohistochemically examined for immunoreactivity (IR) of classical complement proteins (Clq and C3), markers indicating activation of complement (C4d and C5b-9), the complement inhibitor apolipoprotein J (apo J), and markers of AD neuropathology. Abeta42-labeled diffuse plaques were first detected in a 12-year-old DS subject and were not labeled by any of the complement antibodies. Colocalization of Abeta42 with Clq, C3, C4d, and/or apo J was first detected in compacted plaques in the brain of a 15-year-old DS patient with features of mature AD pathology, such as reactive astrocytes, activated microglia, dystrophic neurites, and a few NFTs. IR for C4d and C5b-9 (membrane attack complex, MAC) was observed in small numbers of plaque-associated dystrophic neurites and in focal regions of pyramidal neurons in this 15-year-old. The only other young (=30 years) DS brain to show extensive complement IR was that of a 29-year-old DS subject who also displayed the full range of AD neuropathological features. All middle-aged and old DS brains showed IR for Clq and C3, primarily in compacted plaques. In these cases, C4d IR was found in a subset of Abeta42 plaques and, along with C5b-9 IR, was localized to dystrophic neurites in a subset of neuritic plaques, neurons, and some NFTs. Our data suggest that in AD and DS, the classical complement cascade is activated after compaction of Abeta42 deposits and, in some instances, can progress to the local neuronal expression of the MAC as a response to Abeta plaque maturation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.