We study multi-task reinforcement learning (RL) in tabular episodic Markov decision processes (MDPs). We formulate a heterogeneous multi-player RL problem, in which a group of players concurrently face similar but not necessarily identical MDPs, with a goal of improving their collective performance through inter-player information sharing. We design and analyze an algorithm based on the idea of model transfer, and provide gap-dependent and gap-independent upper and lower bounds that characterize the intrinsic complexity of the problem.
This paper studies classification with an abstention option in the online setting. In this setting, examples arrive sequentially, the learner is given a hypothesis class H, and the goal of the learner is to either predict a label on each example or abstain, while ensuring that it does not make more than a pre-specified number of mistakes when it does predict a label.Previous work on this problem has left open two main challenges. First, not much is known about the optimality of algorithms, and in particular, about what an optimal algorithmic strategy is for any individual hypothesis class. Second, while the realizable case has been studied, the more realistic nonrealizable scenario is not well-understood. In this paper, we address both challenges. First, we provide a novel measure, called the Extended Littlestone's Dimension, which captures the number of abstentions needed to ensure a certain number of mistakes. Second, we explore the non-realizable case, and provide upper and lower bounds on the number of abstentions required by an algorithm to guarantee a specified number of mistakes.
Convolutional neural networks have demonstrated excellent performance in oral cancer detection and classification. However, the end-to-end learning strategy makes CNNs hard to interpret, and it can be challenging to fully understand the decision-making procedure. Additionally, reliability is also a significant challenge for CNN based approaches. In this study, we proposed a neural network called the attention branch network (ABN), which combines the visual explanation and attention mechanisms to improve the recognition performance and interpret the decision-making simultaneously. We also embedded expert knowledge into the network by having human experts manually edit the attention maps for the attention mechanism. Our experiments have shown that ABN performs better than the original baseline network. By introducing the Squeeze-and-Excitation (SE) blocks to the network, the cross-validation accuracy increased further. Furthermore, we observed that some previously misclassified cases were correctly recognized after updating by manually editing the attention maps. The cross-validation accuracy increased from 0.846 to 0.875 with the ABN (Resnet18 as baseline), 0.877 with SE-ABN, and 0.903 after embedding expert knowledge. The proposed method provides an accurate, interpretable, and reliable oral cancer computer-aided diagnosis system through visual explanation, attention mechanisms, and expert knowledge embedding.
We investigate active learning with access to two distinct oracles: Label (which is standard) and Search (which is not). The Search oracle models the situation where a human searches a database to seed or counterexample an existing solution. Search is stronger than Label while being natural to implement in many situations. We show that an algorithm using both oracles can provide exponentially large problem-dependent improvements over Label alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.