Motivation N7-methylguanosine (m7G) is an important epigenetic modification, playing an essential role in gene expression regulation. Therefore, accurate identification of m7G modifications will facilitate revealing and in-depth understanding their potential functional mechanisms. Although high-throughput experimental methods are capable of precisely locating m7G sites, they are still cost ineffective. Therefore, it’s necessary to develop new methods to identify m7G sites. Results In this work, by using the iterative feature representation algorithm, we developed a machine learning based method, namely m7G-IFL, to identify m7G sites. To demonstrate its superiority, m7G-IFL was evaluated and compared with existing predictors. The results demonstrate that our predictor outperforms existing predictors in terms of accuracy for identifying m7G sites. By analyzing and comparing the features used in the predictors, we found that the positive and negative samples in our feature space were more separated than in existing feature space. This result demonstrates that our features extracted more discriminative information via the iterative feature learning process, and thus contributed to the predictive performance improvement.
With the advent of single-cell RNA sequencing (scRNA-seq), one major challenging is the so-called ‘dropout’ events that distort gene expression and remarkably influence downstream analysis in single-cell transcriptome. To address this issue, much effort has been done and several scRNA-seq imputation methods were developed with two categories: model-based and deep learning-based. However, comprehensively and systematically comparing existing methods are still lacking. In this work, we use six simulated and two real scRNA-seq datasets to comprehensively evaluate and compare a total of 12 available imputation methods from the following four aspects: (i) gene expression recovering, (ii) cell clustering, (iii) gene differential expression, and (iv) cellular trajectory reconstruction. We demonstrate that deep learning-based approaches generally exhibit better overall performance than model-based approaches under major benchmarking comparison, indicating the power of deep learning for imputation. Importantly, we built scIMC (single-cell Imputation Methods Comparison platform), the first online platform that integrates all available state-of-the-art imputation methods for benchmarking comparison and visualization analysis, which is expected to be a convenient and useful tool for researchers of interest. It is now freely accessible via https://server.wei-group.net/scIMC/.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.