Protein tyrosine phosphatase-1B (PTP-1B) has been implicated in the negative regulation of insulin signaling. Disruption of the mouse homolog of the gene encoding PTP-1B yielded healthy mice that, in the fed state, had blood glucose concentrations that were slightly lower and concentrations of circulating insulin that were one-half those of their PTP-1B+/+ littermates. The enhanced insulin sensitivity of the PTP-1B-/- mice was also evident in glucose and insulin tolerance tests. The PTP-1B-/- mice showed increased phosphorylation of the insulin receptor in liver and muscle tissue after insulin injection in comparison to PTP-1B+/+ mice. On a high-fat diet, the PTP-1B-/- and PTP-1B+/- mice were resistant to weight gain and remained insulin sensitive, whereas the PTP-1B+/+ mice rapidly gained weight and became insulin resistant. These results demonstrate that PTP-1B has a major role in modulating both insulin sensitivity and fuel metabolism, thereby establishing it as a potential therapeutic target in the treatment of type 2 diabetes and obesity.
Vanadate and pervanadate (the complexes of vanadate with hydrogen peroxide) are two commonly used general protein-tyrosine phosphatase (PTP) inhibitors. These compounds also have insulin-mimetic properties, an observation that has generated a great deal of interest and study. Since a careful kinetic study of the two inhibitors has been lacking, we sought to analyze their mechanisms of inhibition. Our results show that vanadate is a competitive inhibitor for the protein-tyrosine phosphatase PTP1B, with a K i of 0.38 ؎ 0.02 M. EDTA, which is known to chelate vanadate, causes an immediate and complete reversal of the inhibition due to vanadate when added to an enzyme assay. Pervanadate, by contrast, inhibits by irreversibly oxidizing the catalytic cysteine of PTP1B, as determined by mass spectrometry. Reducing agents such as dithiothreitol that are used in PTP assays to keep the catalytic cysteine reduced and active were found to convert pervanadate rapidly to vanadate. Under certain conditions, slow time-dependent inactivation by vanadate was observed; since catalase blocked this inactivation, it was ascribed to in situ generation of hydrogen peroxide and subsequent formation of pervanadate. Implications for the use of these compounds as inhibitors and rationalization for some of their in vivo effects are considered.Protein-tyrosine phosphorylation plays a central role in regulating a variety of fundamental cellular processes (1-3). The tyrosyl phosphorylation state of a protein in the cell reflects the balance between the competing activities of the protein-tyrosine kinases and the protein tyrosine phosphatases (PTPs).
Protein tyrosine phosphatase 1B (PTP1B) has been implicated in the regulation of the insulin signaling pathway and represents an attractive target for the design of inhibitors in the treatment of type 2 diabetes and obesity. Inspection of the structure of PTP1B indicates that potent PTP1B inhibitors may be obtained by targeting a secondary aryl phosphate-binding site as well as the catalytic site. We report here the crystal structures of PTP1B in complex with first and second generation aryldifluoromethyl-phosphonic acid inhibitors. While all compounds bind in a previously unexploited binding pocket near the primary binding site, the second generation compounds also reach into the secondary binding site, and exhibit moderate selectivity for PTP1B over the closely related T-cell phosphatase. The molecular basis for the selectivity has been confirmed by single point mutation at position 52, where the two phosphatases differ by a phenylalanine-to-tyrosine switch. These compounds present a novel platform for the development of potent and selective PTP1B inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.