In this study, four tobacco transformants with the overexpression of inorganic carbon transporter B (ictB) were screened for photosynthetic performance relative to wild-type (WT) in field-based conditions. The WT and transgenic tobacco plants were evaluated for photosynthetic performance to determine the maximum rate of carboxylation (Vc,max), maximum rate of electron transport (Jmax), the photosynthetic compensation point (Γ*), quantum yield of photosystem II (ΦPSII), and mesophyll conductance (gm). Additionally, all plants were harvested to compare differences in above-ground biomass. Overall, transformants did not perform better than WT on photosynthesis, biomass, and leaf composition related traits. This is in contrast to previous studies that have suggested significant increases in photosynthesis and yield with the overexpression of ictB, although not widely evaluated under field conditions. These findings suggest that the benefit of ictB is not universal and may only be seen under certain growth conditions. While there is certainly still potential benefit to utilizing ictB in the future, further effort must be concentrated on understanding the underlying function of the gene and in which environmental conditions it offers the greatest benefit to crop performance. As of now, it is possible that ictB overexpression may be largely favorable in controlled environments, such as greenhouses.
C 4 photosynthesis is characterized by the compartmentalization of the processes of atmospheric uptake of CO 2 and its conversion into carbohydrate between mesophyll and bundle-sheath cells. As a result, most of the enzymes participating in the Calvin-Benson-Bassham (CBB) cycle, including RubisCO, are highly expressed in bundlesheath cells. There is evidence that changes in the regulatory sequences of RubisCO contribute to its bundle-sheath-specific expression, however, little is known about how the spatial-expression pattern of other CBB cycle enzymes is regulated. In this study, we use a computational approach to scan for transcription factor binding sites in the regulatory regions of the genes encoding CBB cycle enzymes, SBPase, FBPase, PRK, and GAPDH-B, of C 3 and C 4 grasses. We identified potential cis-regulatory elements present in each of the genes studied here, regardless of the photosynthetic path used by the plant. The transacting factors that bind these elements have been validated in A. thaliana and might regulate the expression of the genes encoding CBB cycle enzymes. In addition, we also found C 4-specific transcription factor binding sites in the genes encoding CBB cycle enzymes that could potentially contribute to the pathwayspecific regulation of gene expression. These results provide a foundation for the functional analysis of the differences in regulation of genes encoding CBB cycle enzymes between C 3 and C 4 grasses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.