Enhancer of zeste homolog 2 (EZH2) tri-methylates histone 3 at position lysine 27 (H3K27me3). Overexpression and gain-of-function mutations in EZH2 are regarded as oncogenic drivers in lymphoma and other malignancies due to the silencing of tumor suppressors and differentiation genes. EZH2 inhibition is sought to represent a good strategy for tumor therapy. In this study, we treated Burkitt lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL) cell lines with 3-deazaneplanocin—A (DZNep), an indirect EZH2 inhibitor which possesses anticancer properties both in-vitro and in-vivo. We aimed to address the impact of the lymphoma type, EZH2 mutation status, as well as MYC, BCL2 and BCL6 translocations on the sensitivity of the lymphoma cell lines to DZNep-mediated apoptosis. We show that DZNep inhibits proliferation and induces apoptosis of these cell lines independent of the type of lymphoma, the EZH2 mutation status and the MYC, BCL2 and BCL6 rearrangement status. Furthermore, DZNep induced a much stronger apoptosis in majority of these cell lines at a lower concentration, and within a shorter period when compared with EPZ-6438, a direct EZH2 inhibitor currently in phase II clinical trials. Apoptosis induction by DZNep was both concentration-dependent and time-dependent, and was associated with the inhibition of EZH2 and subsequent downregulation of H3K27me3 in DZNep-sensitive cell lines. Although EZH2, MYC, BCL2 and BCL6 are important prognostic biomarkers for lymphomas, our study shows that they poorly influence the sensitivity of lymphoma cell lines to DZNep-mediated apoptosis.
Background: Enhancer of zeste homolog 2 (EZH2) is considered an important driver of tumor development and progression by its histone modifying capabilities. Inhibition of EZH2 activity is thought to be a potent treatment option for eligible cancer patients with an aberrant EZH2 expression profile, thus the indirect EZH2 inhibitor 3-Deazaneplanocin A (DZNep) is currently under evaluation for its clinical utility. Although DZNep blocks proliferation and induces apoptosis in different tumor types including lymphomas, acquired resistance to DZNep may limit its clinical application. Methods: To investigate possible mechanisms of acquired DZNep resistance in B-cell lymphomas, we generated a DZNep-resistant clone from a previously DZNep-sensitive B-cell lymphoma cell line by long-term treatment with increasing concentrations of DZNep (ranging from 200 to 2000 nM) and compared the molecular profiles of resistant and wild-type clones. This comparison was done using molecular techniques such as flow cytometry, copy number variation assay (OncoScan and TaqMan assays), fluorescence in situ hybridization, Western blot, immunohistochemistry and metabolomics analysis. Results: Whole exome sequencing did not indicate the acquisition of biologically meaningful single nucleotide variants. Analysis of copy number alterations, however, demonstrated among other acquired imbalances an amplification (about 30 times) of the S-adenosyl-L-homocysteine hydrolase (AHCY) gene in the resistant clone. AHCY is a direct target of DZNep and is critically involved in the biological methylation process, where it catalyzes the reversible hydrolysis of S-adenosyl-L-homocysteine to L-homocysteine and adenosine. The amplification of the AHCY gene is paralleled by strong overexpression of AHCY at both the transcriptional and protein level, and persists upon culturing the resistant clone in a DZNep-free medium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.