Background
The dissolution process kinetics and optimization of iron from Akwuke ore were investigated in this study. The effects of process parameters such as agitation rate and ore particle size on the dissolution process were also examined. The Akwuke ore was characterized employing the XRD, FT-IR, SEM, and UV-spectroscopy.
Results
The results from the rate constants indicated that the diffusion through the boundary layer process with R2 > 0.96 was the rate-determining mechanism. The maximum iron dissolution rate of 83.2% was obtained at 45-μm particle size while 81.2% and 72.6% iron dissolution rates were obtained at 490 and 390 rpm agitation rates, respectively. Silicon oxide, aluminum oxide, and iron oxide were present in Akwuke ore as indicated from the XRD analysis. The RSM predicted optimum value of the iron dissolution rate from the numerical optimization was experimentally validated to confirm the satisfactory performance of the quadratic model.
Conclusion
This study concludes and presents the potential extraction of iron from Akwuke ore, which will be of immense benefit in hydrometallurgical process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.