The problem of combined nongray radiative and conductive heat transfer in multiple glazing subjected to solar irradiation is analyzed. A spectral solar model proposed by Bird and Riordan is used to calculate direct and diffuse solar irradiance. The radiation element method by ray emission model, REM
2, is used to analyze the spectral dependence of radiative heat transfer. Specular reflection at boundary surfaces is taken into account. The spectral dependence of radiation properties of glass such as specular reflectivity, refraction angle, and absorption coefficient is taken into account. The steady-state temperature and heat flux distributions in the glass layer are obtained and the insulating efficiency of multiple glazing is examined. The overall heat transfer coefficients predicted by the present method are compared with those based on the JIS method. The values obtained by the present method are slightly lower than those obtained by the JIS method. To investigate the spectral variation of radiative heat flux attenuated in the glass layer, the spectral heat flux at the room-side surface and incident radiation are compared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.