During the past decades significant progress has been made in our understanding of the importance of age-appropriate development of new drug therapies in children. Importantly, several regulatory initiatives in Europe and the US have provided a framework for a rationale. In the US, most notably the enactment of the Best Pharmaceuticals for Children Act (BPCA) and Product Research and Equity Act (PREA) has facilitated the studying of on-patent and off-patent drugs in children. The biggest challenge in pediatric studies is defining a safe and effective dose or dose range in a patient population that can span from premature neonates to adolescents. From a mechanism-based perspective, advances in the science of quantitative pharmacology and pharmacometrics have resulted in the development of model-based approaches to better describe and understand important age-related factors influencing drug disposition and response in pediatric patients. The application of modeling and simulation has been shown to result in better estimates of pediatric doses as evidenced by several studies, although the optimal approach is still being debated. The extrapolation of efficacy findings from adults to the pediatric population has streamlined the development process especially for studies in older children. However, a focus on developmental changes in neonates and infants as well as further developing a paradigm for conducting pharmacodynamic studies in neonates, infants, and children remain important unmet needs. In this overview we will review current approaches for age-appropriate dose selection and highlight ongoing efforts to define exposure-response and clinical outcome relationships across the pediatric age spectrum.
1-Aminobenzotriazole (ABT) is widely used as a non-specific inhibitor of animal cytochrome P450 (CYP). In the present study, the inhibitory effect of ABT was investigated on drug oxidations catalyzed by human CYP isoforms. This inhibitory effect was compared with that of SKF-525A, another non-specific inhibitor, and ketoconazole, a potent inhibitor of CYP3A. Bacurovirus-expressed recombinant human CYP isoforms were used as an enzyme source. The specific activities for human CYP isoforms are: phenacetin O-deethylation, for CYP1A2; diclofenac 4'-hydroxylation, for CYP2C9; S-mephenytoin 4'-hydroxylation, for CYP2C19; bufuralol 1'-hydroxylation, for CYP2D6; chlorzoxazone 6-hydroxylation, for CYP2E1; testosterone 6beta-hydroxylation, nifedipine oxidation, and midazolam 1'-hydroxylation, for CYP3A4. ABT inhibited both CYP1A2-dependent activity (Ki=330 microM) and CYP2E1-dependent activity (Ki=8.7 microM). In contrast, SKF-525A weakly inhibited CYP1A2-dependent activities (46% inhibition at 1200 microM) and CYP2E1-dependent activities (65% inhibition at 1000 microM). ABT exhibited the highest Ki value for CYP2C9-dependent diclofenac 4'-hydroxylation among those determined by this assay (Ki=3500 microM). Moreover, SKF-525A showed strong inhibition of CYP2D6-dependent bufuralol 1'-hydroxylation (Ki=0.043 microM). Ketoconazole inhibited all tested drug oxidations, however, its inhibitory effect on CYP1A2-dependent activities was very weak (50% inhibition at 120 microM). ABT, SKF-525A, and ketoconazole showed different selectivity and had a wide range of Ki values for the drug oxidations catalyzed by human CYP enzymes. Therefore, we conclude that inhibitory studies designed to predict the contribution of CYP enzymes to the metabolism of certain compounds should be performed using multiple CYP inhibitors, such as ABT, SKF-525A, and ketoconazole.
This study identified age-appropriate sirolimus dosing regimens for neonates and infants. The algorithm in combination with therapeutic drug management will facilitate sirolimus precision dosing in young children with vascular anomalies. A prospective evaluation is being planned.
Sirolimus is an inhibitor of mammalian target of rapamycin (mTOR) and is increasingly being used in transplantation and cancer therapies. Sirolimus has low oral bioavailability and exhibits large pharmacokinetic variability. The underlying mechanisms for this variability have not been explored to a large extent. Sirolimus metabolism was characterized by in vitro intrinsic clearance estimation. Pathway contribution ranked from CYP3A4 > CYP3A5 > CYP2C8. With the well stirred and Qgut models sirolimus bioavailability was predicted at 15%. Interindividual differences in bioavailability could be attributed to variable intestinal CYP3A expression. The physiologically-based pharmacokinetics (PBPK) model developed in Simcyp predicted a high distribution of sirolimus into adipose tissue and another elimination pathway in addition to CYP-mediated metabolism. PBPK model predictive performance was acceptable with Cmax and area under the curve (AUC) estimates within 20% of observed data in a dose escalation study. The model also showed potential to assess the impact of hepatic impairment and drug–drug interaction (DDI) on sirolimus pharmacokinetics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.