Rice is a major food source for much of the world, and expanding our knowledge of genes conferring specific rice grain attributes will benefit both farmer and consumer. Here we present novel dull grain mutants with a low amylose content (AC) derived from mutagenesis of Oryza sativa, ssp. japonica cv. Taikeng 8 (TK8). Positional cloning of the gene conferring the dull grain phenotype revealed a point mutation located at the acceptor splice site of intron 11 of FLOURY ENDOSPERM2 (FLO2), encoding a tetratricopeptide repeat domain (TPR)-containing protein. Three novel flo2 alleles were identified herein, which surprisingly conferred dull rather than floury grains. The allelic diversity of flo2 perturbed the expression of starch synthesis-related genes including OsAGPL2, OsAGPS2b, OsGBSSI, OsBEI, OsBEIIb, OsISA1, and OsPUL. The effect of the flo2 mutations on the physicochemical properties of the grain included a low breakdown, setback, and consistency of rice, indicating a good elasticity and soft texture of cooked rice grains. The effects of FLO2, combined with the genetic background of the germplasm and environmental effects, resulted in a variety of different amylose content levels, grain appearance, and physicochemical properties of rice, providing a host of useful information to future grain-quality research and breeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.